These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12554934)

  • 1. Membrane-protein crystallization in cubo: temperature-dependent phase behaviour of monoolein-detergent mixtures.
    Sennoga C; Heron A; Seddon JM; Templer RH; Hankamer B
    Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):239-46. PubMed ID: 12554934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane protein crystallization in lipidic mesophases: detergent effects.
    Ai X; Caffrey M
    Biophys J; 2000 Jul; 79(1):394-405. PubMed ID: 10866965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization.
    Misquitta Y; Caffrey M
    Biophys J; 2003 Nov; 85(5):3084-96. PubMed ID: 14581209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of detergent β-octylglucoside and phosphate salt solutions on phase behavior of monoolein mesophases.
    Khvostichenko DS; Ng JJ; Perry SL; Menon M; Kenis PJ
    Biophys J; 2013 Oct; 105(8):1848-59. PubMed ID: 24138861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of lamellar-to-cubic and intercubic phase transitions of pure and cytochrome c containing monoolein dispersions monitored by time-resolved small-angle X-ray diffraction.
    Kraineva J; Narayanan RA; Kondrashkina E; Thiyagarajan P; Winter R
    Langmuir; 2005 Apr; 21(8):3559-71. PubMed ID: 15807602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase.
    Cherezov V; Clogston J; Misquitta Y; Abdel-Gawad W; Caffrey M
    Biophys J; 2002 Dec; 83(6):3393-407. PubMed ID: 12496106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase behavior of a designed cyclopropyl analogue of monoolein: implications for low-temperature membrane protein crystallization.
    Salvati Manni L; Zabara A; Osornio YM; Schöppe J; Batyuk A; Plückthun A; Siegel JS; Mezzenga R; Landau EM
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):1027-31. PubMed ID: 25418121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins.
    Cherezov V; Fersi H; Caffrey M
    Biophys J; 2001 Jul; 81(1):225-42. PubMed ID: 11423409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of bacteriorhodopsin, detergent and hydration on the cubic-to-lamellar phase transition in the monoolein-distearoyl phosphatidyl glycerol-water system.
    Sparr E; Wadsten P; Kocherbitov V; Engström S
    Biochim Biophys Acta; 2004 Oct; 1665(1-2):156-66. PubMed ID: 15471581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput crystallization of membrane proteins using the lipidic bicelle method.
    Ujwal R; Abramson J
    J Vis Exp; 2012 Jan; (59):e3383. PubMed ID: 22257923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic analysis of protein-detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials.
    Meyer A; Dierks K; Hussein R; Brillet K; Brognaro H; Betzel C
    Acta Crystallogr F Struct Biol Commun; 2015 Jan; 71(Pt 1):75-81. PubMed ID: 25615974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.
    Wallace E; Dranow D; Laible PD; Christensen J; Nollert P
    PLoS One; 2011; 6(8):e24488. PubMed ID: 21909395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detergent-free membrane protein crystallization.
    Nollert P; Royant A; Pebay-Peyroula E; Landau EM
    FEBS Lett; 1999 Aug; 457(2):205-8. PubMed ID: 10471779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal behaviour of cubic phases rich in 1-monooleoyl-rac-glycerol in the ternary system. 1-monooleoyl-rac-glycerol/n-octyl-beta-D-glucoside/water.
    Persson G; Edlund H; Lindblom G
    Eur J Biochem; 2003 Jan; 270(1):56-65. PubMed ID: 12492475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phospholipids and a transmembrane peptide on the stability of the cubic phase of monoolein: implication for protein crystallization from a cubic phase.
    Chupin V; Killian JA; de Kruijff B
    Biophys J; 2003 Apr; 84(4):2373-81. PubMed ID: 12668446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome-c Affects the Monoolein Polymorphism: Consequences for Stability and Loading Efficiency of Drug Delivery Systems.
    Mazzoni S; Barbosa LR; Funari SS; Itri R; Mariani P
    Langmuir; 2016 Jan; 32(3):873-81. PubMed ID: 26710233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards redox active liquid crystalline phases of lipids: a monoolein/water system with entrapped derivatives of ferrocene.
    Barauskas J; Razumas V; Talaikyte Z; Bulovas A; Nylander T; Tauraite D; Butkus E
    Chem Phys Lipids; 2003 Mar; 123(1):87-97. PubMed ID: 12637167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature- and pressure-dependent phase behavior of monoacylglycerides monoolein and monoelaidin.
    Czeslik C; Winter R; Rapp G; Bartels K
    Biophys J; 1995 Apr; 68(4):1423-9. PubMed ID: 7787028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization of membrane proteins in cubo.
    Nollert P; Navarro J; Landau EM
    Methods Enzymol; 2002; 343():183-99. PubMed ID: 11665567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides used in membrane protein crystallization.
    Müh F; DiFiore D; Zouni A
    Phys Chem Chem Phys; 2015 May; 17(17):11678-91. PubMed ID: 25865704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.