These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 12555154)

  • 1. Dissociation of hypertrophic growth from changes in myocyte contractile function.
    Harding SE; Del Monte F
    J Card Fail; 2002 Dec; 8(6 Suppl):S415-20. PubMed ID: 12555154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal characteristics of cardiomyocyte hypertrophy in the spontaneously hypertensive rat.
    Bell D; Kelso EJ; Argent CC; Lee GR; Allen AR; McDermott BJ
    Cardiovasc Pathol; 2004; 13(2):71-8. PubMed ID: 15033155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure.
    Oka T; Akazawa H; Naito AT; Komuro I
    Circ Res; 2014 Jan; 114(3):565-71. PubMed ID: 24481846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocyte changes in heart failure.
    Savinova OV; Gerdes AM
    Heart Fail Clin; 2012 Jan; 8(1):1-6. PubMed ID: 22108722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholamban gene ablation improves calcium transients but not cardiac function in a heart failure model.
    Janczewski AM; Zahid M; Lemster BH; Frye CS; Gibson G; Higuchi Y; Kranias EG; Feldman AM; McTiernan CF
    Cardiovasc Res; 2004 Jun; 62(3):468-80. PubMed ID: 15158139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth hormone, acromegaly, and heart failure: an intricate triangulation.
    Saccà L; Napoli R; Cittadini A
    Clin Endocrinol (Oxf); 2003 Dec; 59(6):660-71. PubMed ID: 14974906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment.
    Sabbah HN; Sharov VG; Gupta RC; Mishra S; Rastogi S; Undrovinas AI; Chaudhry PA; Todor A; Mishima T; Tanhehco EJ; Suzuki G
    Circ Res; 2003 Nov; 93(11):1095-101. PubMed ID: 14563716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets.
    Diwan A; Dorn GW
    Physiology (Bethesda); 2007 Feb; 22():56-64. PubMed ID: 17289931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway.
    Shiojima I; Walsh K
    Genes Dev; 2006 Dec; 20(24):3347-65. PubMed ID: 17182864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle.
    Suzuki G; Lee TC; Fallavollita JA; Canty JM
    Circ Res; 2005 Apr; 96(7):767-75. PubMed ID: 15761196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cardiac hypertrophic responses to pathologic and physiologic loads.
    Scheuer J; Buttrick P
    Circulation; 1987 Jan; 75(1 Pt 2):I63-8. PubMed ID: 2947753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative inotropic effects of C-type natriuretic peptide are attenuated in hypertrophied ventricular myocytes associated with reduced cyclic GMP production.
    Moalem J; Davidov T; Zhang Q; Grover GJ; Weiss HR; Scholz PM
    J Surg Res; 2006 Sep; 135(1):38-44. PubMed ID: 16600302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmural changes in size, contractile and electrical properties of SHR left ventricular myocytes during compensated hypertrophy.
    McCrossan ZA; Billeter R; White E
    Cardiovasc Res; 2004 Aug; 63(2):283-92. PubMed ID: 15249186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipase C epsilon modulates beta-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy.
    Wang H; Oestreich EA; Maekawa N; Bullard TA; Vikstrom KL; Dirksen RT; Kelley GG; Blaxall BC; Smrcka AV
    Circ Res; 2005 Dec; 97(12):1305-13. PubMed ID: 16293787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide and promotion of cardiac myocyte apoptosis.
    Andréka P; Tran T; Webster KA; Bishopric NH
    Mol Cell Biochem; 2004 Aug; 263(1-2):35-53. PubMed ID: 15524166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure.
    Wang J; Xu N; Feng X; Hou N; Zhang J; Cheng X; Chen Y; Zhang Y; Yang X
    Circ Res; 2005 Oct; 97(8):821-8. PubMed ID: 16151019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of ryanodine receptors in effects of cyclic GMP is reduced in thyroxine-induced cardiac hypertrophy.
    Zhang Q; Goel N; Rodriguez R; Scholz PM; Weiss HR
    Eur J Pharmacol; 2006 May; 537(1-3):45-51. PubMed ID: 16626695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium and myocyte cellular insulin receptor alterations in a rat model of myocardial infarction.
    Jaroudi WA; Jurjus AR; El-Sabban ME; Kamal MT; Bitar KM; Bikhazi AB
    Can J Physiol Pharmacol; 2003 Mar; 81(3):267-73. PubMed ID: 12733825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pathophysiologic role of myocardial hypertrophy, microcirculatory dysfunction and cardiomyocyte apoptosis in aortic stenosis].
    Lotrionte M; Galiuto L; Biondi-Zoccai GG; Abbate A
    G Ital Cardiol (Rome); 2006 Jul; 7(7):437-44. PubMed ID: 16977783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.