These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 12555543)
1. [Light-dependent incorporation of selenite into selenocysteine by isolated chromatophore of Chromatium vinosum]. Wang M; Jin X; Guo X; Qi Y Wei Sheng Wu Xue Bao; 1999 Jun; 39(3):255-9. PubMed ID: 12555543 [TBL] [Abstract][Full Text] [Related]
2. Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. Carvalho CM; Lu J; Zhang X; Arnér ES; Holmgren A FASEB J; 2011 Jan; 25(1):370-81. PubMed ID: 20810785 [TBL] [Abstract][Full Text] [Related]
3. Thioredoxin system of the photosynthetic anaerobe Chromatium vinosum. Johnson TC; Crawford NA; Buchanan BB J Bacteriol; 1984 Jun; 158(3):1061-9. PubMed ID: 6373736 [TBL] [Abstract][Full Text] [Related]
4. Effects of surface potential and membrane potential on the midpoint potential of cytochrome c-555 bound to the chromatophore membrane of Chromatium vinosum. Itoh S Biochim Biophys Acta; 1980 Jul; 591(2):346-55. PubMed ID: 6249347 [TBL] [Abstract][Full Text] [Related]
5. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. Juniper DT; Phipps RH; Ramos-Morales E; Bertin G J Anim Sci; 2008 Nov; 86(11):3100-9. PubMed ID: 18567732 [TBL] [Abstract][Full Text] [Related]
6. L-aspartate transport in the photosynthetic bacterium Chromatium vinosum. Cobb AD; Knaff DB Arch Biochem Biophys; 1983 Aug; 225(1):86-94. PubMed ID: 6614931 [TBL] [Abstract][Full Text] [Related]
7. Function and properties of a soluble c-type cytochrome c-551 in secondary photosynthetic electron transport in whole cells of Chromatium vinosum as studied with flash spectroscopy. Grondelle V; Duysens LN; van der Wel JA; van der Wal HN Biochim Biophys Acta; 1977 Aug; 461(2):188-201. PubMed ID: 196641 [No Abstract] [Full Text] [Related]
8. [Concentration of polyvalent metals following a change in the metabolism of Chromatium vinosum]. Udel'nova TM; Chudina VI; Osnitskaia LK; Boĭchenko EA; Chernogorova SM Mikrobiologiia; 1977; 46(3):418-22. PubMed ID: 895552 [TBL] [Abstract][Full Text] [Related]
9. [Possibility of using light of different wavelengths for growing Chromatium vinosum in heterotrophic conditions]. Osnitskaia LK; Chudina VI Mikrobiologiia; 1977; 46(4):612-8. PubMed ID: 909462 [TBL] [Abstract][Full Text] [Related]
10. PHA synthase from chromatium vinosum: cysteine 149 is involved in covalent catalysis. Müh U; Sinskey AJ; Kirby DP; Lane WS; Stubbe J Biochemistry; 1999 Jan; 38(2):826-37. PubMed ID: 9888824 [TBL] [Abstract][Full Text] [Related]
12. Lysine and arginine transport in the photosynthetic bacterium Chromatium vinosum. Kim YA; Knaff DB Arch Biochem Biophys; 1988 Jan; 260(1):134-8. PubMed ID: 3124743 [TBL] [Abstract][Full Text] [Related]
13. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec). Amberg R; Mizutani T; Wu XQ; Gross HJ J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909 [TBL] [Abstract][Full Text] [Related]
14. Photooxidative Damage in Photosynthetic Activities of Chromatium vinosum. Asami S; Akazawa T Plant Physiol; 1978 Dec; 62(6):981-6. PubMed ID: 16660651 [TBL] [Abstract][Full Text] [Related]
15. The functional role of selenocysteine (Sec) in the catalysis mechanism of large thioredoxin reductases: proposition of a swapping catalytic triad including a Sec-His-Glu state. Brandt W; Wessjohann LA Chembiochem; 2005 Feb; 6(2):386-94. PubMed ID: 15651042 [TBL] [Abstract][Full Text] [Related]
16. Interactions of sodium selenite, glutathione, arsenic species, and omega class human glutathione transferase. Zakharyan RA; Tsaprailis G; Chowdhury UK; Hernandez A; Aposhian HV Chem Res Toxicol; 2005 Aug; 18(8):1287-95. PubMed ID: 16097802 [TBL] [Abstract][Full Text] [Related]
17. [The participation of propionic acid in the constructive metabolism of Chromatium vinosum]. SHAPOSHNIKOV VN; OSNITSKAIA LK; CHUDINA VI Mikrobiologiia; 1960; 29():164-9. PubMed ID: 14445552 [No Abstract] [Full Text] [Related]
18. Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum. Van Driessche G; Koh M; Chen ZW; Mathews FS; Meyer TE; Bartsch RG; Cusanovich MA; Van Beeumen JJ Protein Sci; 1996 Sep; 5(9):1753-64. PubMed ID: 8880899 [TBL] [Abstract][Full Text] [Related]
19. Effects of dietary selenium supplementation on tissue selenium distribution and glutathione peroxidase activity in Chinese Ring necked Pheasants. Juniper DT; Bertin G Animal; 2013 Apr; 7(4):562-70. PubMed ID: 23200142 [TBL] [Abstract][Full Text] [Related]
20. The role of soluble cytochrome c-551 in cyclic electron flow-driven active transport in Chromatium vinosum. Knaff DB; Whetstone R; Carr JW Biochim Biophys Acta; 1980 Mar; 590(1):50-8. PubMed ID: 6243974 [No Abstract] [Full Text] [Related] [Next] [New Search]