These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12555856)

  • 1. The dynamic transition in proteins may have a simple explanation.
    Daniel RM; Finney JL; Smith JC
    Faraday Discuss; 2003; 122():163-9; discussion 171-90. PubMed ID: 12555856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme activity and dynamics: xylanase activity in the absence of fast anharmonic dynamics.
    Dunn RV; Réat V; Finney J; Ferrand M; Smith JC; Daniel RM
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):355-8. PubMed ID: 10677353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme activity below the dynamical transition at 220 K.
    Daniel RM; Smith JC; Ferrand M; Héry S; Dunn R; Finney JL
    Biophys J; 1998 Nov; 75(5):2504-7. PubMed ID: 9788945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent dependence of dynamic transitions in protein solutions.
    Réat V; Dunn R; Ferrand M; Finney JL; Daniel RM; Smith JC
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9961-6. PubMed ID: 10963663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme dynamics and activity: time-scale dependence of dynamical transitions in glutamate dehydrogenase solution.
    Daniel RM; Finney JL; Réat V; Dunn R; Ferrand M; Smith JC
    Biophys J; 1999 Oct; 77(4):2184-90. PubMed ID: 10512837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic arrangement of ion pairs and individual contributions to the thermal stability of the cofactor-binding domain of glutamate dehydrogenase from Thermotoga maritima.
    Danciulescu C; Ladenstein R; Nilsson L
    Biochemistry; 2007 Jul; 46(29):8537-49. PubMed ID: 17602502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical transition of myoglobin revealed by inelastic neutron scattering.
    Doster W; Cusack S; Petry W
    Nature; 1989 Feb; 337(6209):754-6. PubMed ID: 2918910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the possible manifestation of harmonic-anharmonic dynamical transition in glassy media in electron paramagnetic resonance of nitroxide spin probes.
    Dzuba SA; Kirilina EP; Salnikov ES
    J Chem Phys; 2006 Aug; 125(5):054502. PubMed ID: 16942221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditioning action of the environment on the protein dynamics studied through elastic neutron scattering.
    Paciaroni A; Cornicchi E; De Francesco A; Marconi M; Onori G
    Eur Biophys J; 2006 Sep; 35(7):591-9. PubMed ID: 16761157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and timescale dependence of protein dynamics in methanol : water mixtures.
    Tournier AL; Réat V; Dunn R; Daniel R; Smith JC; Finney J
    Phys Chem Chem Phys; 2005 Apr; 7(7):1388-93. PubMed ID: 19787959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron frequency windows and the protein dynamical transition.
    Becker T; Hayward JA; Finney JL; Daniel RM; Smith JC
    Biophys J; 2004 Sep; 87(3):1436-44. PubMed ID: 15345526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion.
    Hong SY; Lee JS; Cho KM; Math RK; Kim YH; Hong SJ; Cho YU; Kim H; Yun HD
    Biotechnol Lett; 2006 Nov; 28(22):1857-62. PubMed ID: 16988785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase from Thermococcus profundus studied by cryogenic X-ray crystal structure analysis and small-angle X-ray scattering.
    Nakasako M; Fujisawa T; Adachi S; Kudo T; Higuchi S
    Biochemistry; 2001 Mar; 40(10):3069-79. PubMed ID: 11258921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and characterization of a thermostable beta-xylosidase from the hyperthermophile, Thermotoga maritima.
    Xue Y; Shao W
    Biotechnol Lett; 2004 Oct; 26(19):1511-5. PubMed ID: 15604789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels.
    Golysheva EA; Shevelev GY; Dzuba SA
    J Chem Phys; 2017 Aug; 147(6):064501. PubMed ID: 28810753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data.
    Loncharich RJ; Brooks BR
    J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of dynamics in enzyme activity.
    Daniel RM; Dunn RV; Finney JL; Smith JC
    Annu Rev Biophys Biomol Struct; 2003; 32():69-92. PubMed ID: 12471064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change of caged dynamics at T(g) in hydrated proteins: trend of mean squared displacements after correcting for the methyl-group rotation contribution.
    Ngai KL; Capaccioli S; Paciaroni A
    J Chem Phys; 2013 Jun; 138(23):235102. PubMed ID: 23802985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamical transition of proteins, concepts and misconceptions.
    Doster W
    Eur Biophys J; 2008 Jun; 37(5):591-602. PubMed ID: 18270694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.