BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 12556399)

  • 21. Growth factors involved in aqueous humour-induced lens cell proliferation.
    Iyengar L; Patkunanathan B; McAvoy JW; Lovicu FJ
    Growth Factors; 2009 Feb; 27(1):50-62. PubMed ID: 19085197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of aqueous and vitreous on fiber differentiation and extracellular matrix accumulation in lens epithelial explants.
    Lovicu FJ; Chamberlain CG; McAvoy JW
    Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1459-69. PubMed ID: 7775124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Both autocrine and paracrine effects of transfected acidic fibroblast growth factor are involved in the estrogen-independent and antiestrogen-resistant growth of MCF-7 breast cancer cells.
    Zhang L; Kharbanda S; Hanfelt J; Kern FG
    Cancer Res; 1998 Jan; 58(2):352-61. PubMed ID: 9443417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equarin is involved as an FGF signaling modulator in chick lens differentiation.
    Song X; Sato Y; Felemban A; Ito A; Hossain M; Ochiai H; Yamamoto T; Sekiguchi K; Tanaka H; Ohta K
    Dev Biol; 2012 Aug; 368(1):109-17. PubMed ID: 22659080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Essential role of BMPs in FGF-induced secondary lens fiber differentiation.
    Boswell BA; Overbeek PA; Musil LS
    Dev Biol; 2008 Dec; 324(2):202-12. PubMed ID: 18848538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sef is a negative regulator of fiber cell differentiation in the ocular lens.
    Newitt P; Boros J; Madakashira BP; Robinson ML; Reneker LW; McAvoy JW; Lovicu FJ
    Differentiation; 2010 Jul; 80(1):53-67. PubMed ID: 20542628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of lens cell growth and polarity by an embryo-specific growth factor and by inhibitors of lens cell proliferation and differentiation.
    Hyatt GA; Beebe DC
    Development; 1993 Feb; 117(2):701-9. PubMed ID: 8330534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BMP-2 augments FGF-induced differentiation of PC12 cells through upregulation of FGF receptor-1 expression.
    Hayashi H; Ishisaki A; Suzuki M; Imamura T
    J Cell Sci; 2001 Apr; 114(Pt 7):1387-95. PubMed ID: 11257004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Focal adhesion kinase (FAK) expression and activation during lens development.
    Kokkinos MI; Brown HJ; de Iongh RU
    Mol Vis; 2007 Mar; 13():418-30. PubMed ID: 17417603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression.
    Audette DS; Anand D; So T; Rubenstein TB; Lachke SA; Lovicu FJ; Duncan MK
    Development; 2016 Jan; 143(2):318-28. PubMed ID: 26657765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development.
    Dell'Era P; Ronca R; Coco L; Nicoli S; Metra M; Presta M
    Circ Res; 2003 Sep; 93(5):414-20. PubMed ID: 12893744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation.
    Beebe DC; Feagans DE; Jebens HA
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):490-3. PubMed ID: 6928641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms.
    Hoffman MP; Kidder BL; Steinberg ZL; Lakhani S; Ho S; Kleinman HK; Larsen M
    Development; 2002 Dec; 129(24):5767-78. PubMed ID: 12421715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of a truncated FGF receptor results in defective lens development in transgenic mice.
    Robinson ML; MacMillan-Crow LA; Thompson JA; Overbeek PA
    Development; 1995 Dec; 121(12):3959-67. PubMed ID: 8575296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c.
    Ohmachi S; Mikami T; Konishi M; Miyake A; Itoh N
    J Neurosci Res; 2003 May; 72(4):436-43. PubMed ID: 12704805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of lens fiber cell differentiation and survival at multiple stages by region-specific expression of truncated FGF receptors.
    Stolen CM; Griep AE
    Dev Biol; 2000 Jan; 217(2):205-20. PubMed ID: 10625547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and serum-free culture of epithelial cells derived from epithelial rests of Malassez in human periodontal ligament.
    Yamanaka T; Sakamoto A; Tanaka Y; Zhang Y; Hayashido Y; Toratani S; Akagawa Y; Okamoto T
    In Vitro Cell Dev Biol Anim; 2000 Sep; 36(8):548-53. PubMed ID: 11149756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of heparin saccharides on the formation of specific fibroblast growth factor (FGF) and FGF receptor complexes.
    Ostrovsky O; Berman B; Gallagher J; Mulloy B; Fernig DG; Delehedde M; Ron D
    J Biol Chem; 2002 Jan; 277(4):2444-53. PubMed ID: 11714710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A soluble fibroblast growth factor receptor is released from HL-60 promyelocytic leukemia cells: implications for paracrine growth control.
    Wang JF; Shen M; Fong GH; Hill DJ
    Growth Factors; 2000; 17(3):203-14. PubMed ID: 10705578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation.
    Sugi Y; Ito N; Szebenyi G; Myers K; Fallon JF; Mikawa T; Markwald RR
    Dev Biol; 2003 Jun; 258(2):252-63. PubMed ID: 12798286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.