These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12557313)

  • 1. Surface engineering of living myoblasts via selective periodate oxidation.
    De Bank PA; Kellam B; Kendall DA; Shakesheff KM
    Biotechnol Bioeng; 2003 Mar; 81(7):800-8. PubMed ID: 12557313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of aldehyde moieties involved in the activation of suppressor cells by sodium periodate.
    Dehoux-Zenou SM; Guenounou M; Zinbi H; Ougen P; Couderc R; Agneray JC
    J Immunol; 1987 Feb; 138(4):1157-63. PubMed ID: 3027171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic expression of thiol-derivatized sialic acids on the cell surface and their quantitative estimation by flow cytometry.
    Sampathkumar SG; Jones MB; Yarema KJ
    Nat Protoc; 2006; 1(4):1840-51. PubMed ID: 17487167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution.
    Boontheekul T; Kong HJ; Mooney DJ
    Biomaterials; 2005 May; 26(15):2455-65. PubMed ID: 15585248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The in vitro preconditioning of myoblasts to enhance subsequent survival in an in vivo tissue engineering chamber model.
    Tilkorn DJ; Davies EM; Keramidaris E; Dingle AM; Gerrand YW; Taylor CJ; Han XL; Palmer JA; Penington AJ; Mitchell CA; Morrison WA; Dusting GJ; Mitchell GM
    Biomaterials; 2012 May; 33(15):3868-79. PubMed ID: 22369961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis.
    Mahal LK; Yarema KJ; Bertozzi CR
    Science; 1997 May; 276(5315):1125-8. PubMed ID: 9173543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-density seeding of myocyte cells for cardiac tissue engineering.
    Radisic M; Euloth M; Yang L; Langer R; Freed LE; Vunjak-Novakovic G
    Biotechnol Bioeng; 2003 May; 82(4):403-14. PubMed ID: 12632397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of human myoblast cultures for tissue engineering.
    Stern-Straeter J; Bran G; Riedel F; Sauter A; Hörmann K; Goessler UR
    Int J Mol Med; 2008 Jan; 21(1):49-56. PubMed ID: 18097615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering cell surfaces via liposome fusion.
    Dutta D; Pulsipher A; Luo W; Mak H; Yousaf MN
    Bioconjug Chem; 2011 Dec; 22(12):2423-33. PubMed ID: 22054009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering.
    Prasad Chennazhy K; Krishnan LK
    Biomaterials; 2005 Oct; 26(28):5658-67. PubMed ID: 15878371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair.
    Conconi MT; De Coppi P; Bellini S; Zara G; Sabatti M; Marzaro M; Zanon GF; Gamba PG; Parnigotto PP; Nussdorfer GG
    Biomaterials; 2005 May; 26(15):2567-74. PubMed ID: 15585259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic parameters for small-molecule drug delivery by covalent cell surface targeting.
    Nauman DA; Bertozzi CR
    Biochim Biophys Acta; 2001 Dec; 1568(2):147-54. PubMed ID: 11750762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic delivery of ketone groups to sialic acid residues. Application To cell surface glycoform engineering.
    Yarema KJ; Mahal LK; Bruehl RE; Rodriguez EC; Bertozzi CR
    J Biol Chem; 1998 Nov; 273(47):31168-79. PubMed ID: 9813021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid localized cell trapping on biodegradable polymers using cell surface derivatization and microfluidic networking.
    Sinclair J; Salem AK
    Biomaterials; 2006 Mar; 27(9):2090-4. PubMed ID: 16307795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-specific delivery of polymeric nanoparticles to carbohydrate-tagging cells.
    Iwasaki Y; Maie H; Akiyoshi K
    Biomacromolecules; 2007 Oct; 8(10):3162-8. PubMed ID: 17883278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and differentiation potentials in confluent state of culture of human skeletal muscle myoblasts.
    Chowdhury SR; Muneyuki Y; Takezawa Y; Kino-oka M; Saito A; Sawa Y; Taya M
    J Biosci Bioeng; 2010 Mar; 109(3):310-3. PubMed ID: 20159584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
    Jun I; Jeong S; Shin H
    Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Micropatterning of biotin-avidin layers and cell location].
    Hu J; Wang ZH; Tao ZL
    Sheng Wu Gong Cheng Xue Bao; 2002 Sep; 18(5):619-21. PubMed ID: 12561211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.