BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 12557317)

  • 1. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxygen level determines the fermentation pattern in Kluyveromyces lactis.
    Merico A; Galafassi S; Piskur J; Compagno C
    FEMS Yeast Res; 2009 Aug; 9(5):749-56. PubMed ID: 19500150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359.
    Kiers J; Zeeman AM; Luttik M; Thiele C; Castrillo JI; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 1998 Mar; 14(5):459-69. PubMed ID: 9559553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations.
    Møller K; Sharif MZ; Olsson L
    J Biotechnol; 2004 Aug; 111(3):311-8. PubMed ID: 15246667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359.
    Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY
    Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of the genes encoding delta(8)-sphingolipid desaturase from Saccharomyces kluyveri and Kluyveromyces lactis.
    Takakuwa N; Kinoshita M; Oda Y; Ohnishi M
    Curr Microbiol; 2002 Dec; 45(6):459-61. PubMed ID: 12402089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing.
    Jobé AM; Herwig C; Surzyn M; Walker B; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Jun; 82(6):627-39. PubMed ID: 12673762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis.
    Jouhten P; Wiebe M; Penttilä M
    FEBS J; 2012 Sep; 279(18):3338-54. PubMed ID: 22672422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS; Steensma HY
    FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess.
    Bellaver LH; de Carvalho NM; Abrahão-Neto J; Gombert AK
    FEMS Yeast Res; 2004 May; 4(7):691-8. PubMed ID: 15093772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.
    Kresnowati MT; van Winden WA; van Gulik WM; Heijnen JJ
    FEBS J; 2008 Nov; 275(22):5527-41. PubMed ID: 18959741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri.
    Møller K; Bro C; Piskur J; Nielsen J; Olsson L
    FEMS Yeast Res; 2002 May; 2(2):233-44. PubMed ID: 12702311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of yeast metabolism and process dynamics in batch fermentation.
    Sainz J; Pizarro F; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2003 Mar; 81(7):818-28. PubMed ID: 12557315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat flux measurements for the fast monitoring of dynamic responses to glucose additions by yeasts that were subjected to different feeding regimes in continuous culture.
    van Kleeff BH; Kuenen JG; Heijnen JJ
    Biotechnol Prog; 1996; 12(4):510-8. PubMed ID: 8987477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.