These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1255741)

  • 1. Prolongation of tension on reoxygenation following myocardial hypoxia: a possible role for mitochondria in muscle relaxation.
    Bing OH; Brooks WW; Messer JV
    J Mol Cell Cardiol; 1976 Mar; 8(3):205-15. PubMed ID: 1255741
    [No Abstract]   [Full Text] [Related]  

  • 2. Lipophilic thiourea and thiouracil as inhibitors of oxidative phosphorylation.
    Bäuerlein E; Keihl R
    FEBS Lett; 1976 Jan; 61(1):68-71. PubMed ID: 1245224
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of the responses of fetal and adult cardiac muscle to hypoxia.
    Su JY; Friedman WF
    Am J Physiol; 1973 Jun; 224(6):1249-53. PubMed ID: 4712135
    [No Abstract]   [Full Text] [Related]  

  • 4. An analysis of the contractile responses of the rat vas deferens to xylocaine (lidocaine) and procaine.
    Vohra MM
    Eur J Pharmacol; 1970 Jan; 9(1):14-20. PubMed ID: 5434289
    [No Abstract]   [Full Text] [Related]  

  • 5. Reversal by uncouplers of oxidative phosphorylation and by Ca2+ of the inhibition of mitochondrial ATPase activity by the ATPase inhibitor protein of rat skeletal muscle.
    Yamada EW; Huzel NJ; Dickison JC
    J Biol Chem; 1981 Oct; 256(19):10203-7. PubMed ID: 6456266
    [No Abstract]   [Full Text] [Related]  

  • 6. The effects of temperature and metabolic inhibitors on the spontaneous relaxation of the potassium contracture of the heart of the frog Rana pipiens.
    Chapman RA
    J Physiol; 1973 Jun; 231(2):233-49. PubMed ID: 4541722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing tolerance of cardiac muscle to hypoxia.
    Bing OH; Apstein CS; Brooks WW
    Recent Adv Stud Cardiac Struct Metab; 1975; 10():343-54. PubMed ID: 1831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of isoproterenol on heart muscle performance during myocardial hypoxia.
    Bing OH; Brooks WW; Messer JV
    J Mol Cell Cardiol; 1972 Aug; 4(4):319-28. PubMed ID: 5052587
    [No Abstract]   [Full Text] [Related]  

  • 9. Reserpine as an uncoupler of oxidative phosphorylation and the relevance to its psychoactive properties.
    Weinbach EC; Costa JL; Claggett CE; Fay DD; Hundal T
    Biochem Pharmacol; 1983 Apr; 32(8):1371-7. PubMed ID: 6222736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart.
    Weiss J; Hiltbrand B
    J Clin Invest; 1985 Feb; 75(2):436-47. PubMed ID: 3973013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of thyroxine and 2,4-dinitrophenol on cardiac energetics].
    Aliukhin IuS
    Fiziol Zh SSSR Im I M Sechenova; 1976 Aug; 62(8):1182-9. PubMed ID: 992140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glycolysis in the relaxation process in mammalian cardiac muscle: comparison of the influence of glucose and 2-deoxyglucose on maintenance of resting tension.
    Anderson GL; Morris RG
    Life Sci; 1978 Jul; 23(1):23-31. PubMed ID: 682862
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of propranolol on heart muscle mitochondria.
    Sakurada A; Voss DO; Brandão D; Campello AP
    Biochem Pharmacol; 1972 Feb; 21(4):535-40. PubMed ID: 4335406
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy-dependent efflux of K+ from heart mitochondria.
    Chavez E; Jung DW; Brierley GP
    Biochem Biophys Res Commun; 1977 Mar; 75(1):69-75. PubMed ID: 403915
    [No Abstract]   [Full Text] [Related]  

  • 15. Conformational changes of mitochondria associated with uncoupling of oxidative phosphorylation in vivo and in vitro.
    Buffa P; Guarriera-Bobyleva V; Muscatello U; Pasquali-Ronchetti I
    Nature; 1970 Apr; 226(5242):272-4. PubMed ID: 4191173
    [No Abstract]   [Full Text] [Related]  

  • 16. Resistance of contracting myocardium to swelling with hypoxia and glycolytic blockade.
    Pine MB; Caulfield JB; Bing OH; Brooks WW; Abelmann WH
    Cardiovasc Res; 1979 Apr; 13(4):215-24. PubMed ID: 466662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolated cardiac muscle performance during fluorocarbon immersion and effects of metabolic blockade.
    Bing OH; Brooks WW
    Proc Soc Exp Biol Med; 1978 Sep; 158(4):561-4. PubMed ID: 693474
    [No Abstract]   [Full Text] [Related]  

  • 18. 2,4-Dinitrophenol causes a marked increase in the apparent Km of Pi and of ADP for oxidative phosphorylation.
    Kayalar C; Rosing J; Boyer PD
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1153-9. PubMed ID: 985515
    [No Abstract]   [Full Text] [Related]  

  • 19. The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart cells.
    Doorey AJ; Barry WH
    Circ Res; 1983 Aug; 53(2):192-201. PubMed ID: 6883645
    [No Abstract]   [Full Text] [Related]  

  • 20. Relationship between inhibition of prostaglandin beta-oxidation and deenergization of mitochondrial membranes.
    Byczkowski JZ; Hać EE
    Acta Biol Med Ger; 1978; 37(5-6):895-6. PubMed ID: 743346
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.