BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 1255766)

  • 1. A new culture model facilitating rapid quantitative testing of mitotic spindle inhibition in mammalian cells.
    De Brabander M; Van de Veire R; Aerts F; Geuens S; Hoebeke J
    J Natl Cancer Inst; 1976 Feb; 56(2):357-63. PubMed ID: 1255766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle.
    Jordan A; Hadfield JA; Lawrence NJ; McGown AT
    Med Res Rev; 1998 Jul; 18(4):259-96. PubMed ID: 9664292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro.
    De Brabander MJ; Van de Veire RM; Aerts FE; Borgers M; Janssen PA
    Cancer Res; 1976 Mar; 36(3):905-16. PubMed ID: 766963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative turbidimetric assay for potency evaluation of colchicine-like drugs.
    Hoebeke J; Nijen GV
    Life Sci; 1975 Aug; 17(4):591-5. PubMed ID: 1186425
    [No Abstract]   [Full Text] [Related]  

  • 5. Action of drugs on microtubules.
    Wilson L
    Life Sci; 1975 Aug; 17(3):303-9. PubMed ID: 1099380
    [No Abstract]   [Full Text] [Related]  

  • 6. Microtubule assembly and function in Chlamydomonas: inhibition of growth and flagellar regeneration by antitubulins and other drugs and isolation of resistant mutants.
    Flavin M; Slaughter C
    J Bacteriol; 1974 Apr; 118(1):59-69. PubMed ID: 4362464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.
    Wang RC; Chen X; Parissenti AM; Joy AA; Tuszynski J; Brindley DN; Wang Z
    PLoS One; 2017; 12(8):e0182400. PubMed ID: 28787019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of anti-mitotic drugs on the in vitro secretory activity of mammotrophs and somatotrophs and on their microtubules.
    MacLeod RM; Lehmeyer JE; Bruni C
    Proc Soc Exp Biol Med; 1973 Oct; 144(1):259-67. PubMed ID: 4771568
    [No Abstract]   [Full Text] [Related]  

  • 9. The melanocyte model. Colchicine-like effects of other antimitotic agents.
    Malawista SE
    J Cell Biol; 1971 Jun; 49(3):848-55. PubMed ID: 5559844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of tubulin-microtubule polymerization by drugs of the Vinca alkaloid class.
    Owellen RJ; Hartke CA; Dickerson RM; Hains FO
    Cancer Res; 1976 Apr; 36(4):1499-502. PubMed ID: 1260766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunofluorescence study of the action of navelbine, vincristine and vinblastine on mitotic and axonal microtubules.
    Binet S; Chaineau E; Fellous A; Lataste H; Krikorian A; Couzinier JP; Meininger V
    Int J Cancer; 1990 Aug; 46(2):262-6. PubMed ID: 2200754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of action of colchicine. Colchicine binding properties of sea urchin sperm tail outer doublet tubulin.
    Wilson L; Meza I
    J Cell Biol; 1973 Sep; 58(3):709-19. PubMed ID: 4747924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine.
    Ngan VK; Bellman K; Hill BT; Wilson L; Jordan MA
    Mol Pharmacol; 2001 Jul; 60(1):225-32. PubMed ID: 11408618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin.
    Gupta K; Bishop J; Peck A; Brown J; Wilson L; Panda D
    Biochemistry; 2004 Jun; 43(21):6645-55. PubMed ID: 15157098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimitotic and antitubulin activity of the tumor inhibitor steganacin.
    Wang RW; Rebhum LI; Kupchan SM
    Cancer Res; 1977 Sep; 37(9):3071-9. PubMed ID: 560248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for microtubule-disrupting antifungal agents by using a mitotic-arrest mutant of Aspergillus nidulans and novel action of phenylalanine derivatives accompanying tubulin loss.
    Kiso T; Fujita K; Ping X; Tanaka T; Taniguchi M
    Antimicrob Agents Chemother; 2004 May; 48(5):1739-48. PubMed ID: 15105129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of cryptophycin 1 with tubulin and microtubules.
    Kerksiek K; Mejillano MR; Schwartz RE; Georg GI; Himes RH
    FEBS Lett; 1995 Dec; 377(1):59-61. PubMed ID: 8543019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ analysis of the action of Navelbine on various types of microtubules using immunofluorescence.
    Binet S; Fellous A; Lataste H; Krikorian A; Couzinier JP; Meininger V
    Semin Oncol; 1989 Apr; 16(2 Suppl 4):5-8. PubMed ID: 2652320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microtubule inhibitors on malignant invasion in vitro.
    Mareel MM; De Brabander MJ
    J Natl Cancer Inst; 1978 Sep; 61(3):787-92. PubMed ID: 278855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of plasminogen activator expression and induction of DNA synthesis by microtubule-disruptive drugs.
    Chou IN; Zeiger J; Solomon JA; Black PH
    Biochem Biophys Res Commun; 1981 Aug; 101(4):1266-73. PubMed ID: 7197932
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.