These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 12557760)
1. [The degradation performance of bioabsorbable acylchitin fiber reinforced PLA composite materials in vitro and in vivo]. Chen C; Cheng H; Sun K; Wu R; Jiang R Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):117-21. PubMed ID: 12557760 [TBL] [Abstract][Full Text] [Related]
2. [The degradation performance of chitin short fiber reinforced polycaprolactone composite in vitro]. Duan L; Xu Z; Sun K; Zhao X; Fang J; Qin X; Gong Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):582-5. PubMed ID: 17713266 [TBL] [Abstract][Full Text] [Related]
3. The effects of fibre reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro. Törmälä P; Vainionpää S; Kilpikari J; Rokkanen P Biomaterials; 1987 Jan; 8(1):42-5. PubMed ID: 3828444 [TBL] [Abstract][Full Text] [Related]
4. Fiber-reinforced bioactive and bioabsorbable hybrid composites. Huttunen M; Törmälä P; Godinho P; Kellomäki M Biomed Mater; 2008 Sep; 3(3):034106. PubMed ID: 18689925 [TBL] [Abstract][Full Text] [Related]
5. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion. Slivka MA; Chu CC; Adisaputro IA J Biomed Mater Res; 1997 Sep; 36(4):469-77. PubMed ID: 9294762 [TBL] [Abstract][Full Text] [Related]
6. Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Vainionpää S; Kilpikari J; Laiho J; Helevirta P; Rokkanen P; Törmälä P Biomaterials; 1987 Jan; 8(1):46-8. PubMed ID: 3828445 [TBL] [Abstract][Full Text] [Related]
7. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites. Shen L; Yang H; Ying J; Qiao F; Peng M J Mater Sci Mater Med; 2009 Nov; 20(11):2259-65. PubMed ID: 19488680 [TBL] [Abstract][Full Text] [Related]
8. [Preparation and biological evaluation of Chitin short fiber reinforced polycaprolactone composite]. Duan L; Xu Z; Sun K; Zhao X; Fang J; Qin X; Gong Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):565-8. PubMed ID: 16856390 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite: an experimental study on rabbits. Kettunen J; Mäkelä EA; Miettinen H; Nevalainen T; Heikkilä M; Pohjonen T; Törmälä P; Rokkanen P Biomaterials; 1998 Jul; 19(14):1219-28. PubMed ID: 9720885 [TBL] [Abstract][Full Text] [Related]
10. Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute. Suwanprateeb J; Luangwattanawilai T; Theeranattapong T; Suvannapruk W; Chumnanvej S; Hemstapat W J Mater Sci Mater Med; 2016 Jul; 27(7):122. PubMed ID: 27278580 [TBL] [Abstract][Full Text] [Related]
11. Pliable polylactide plates for guided bone regeneration: manufacturing and in vitro. Kellomäki M; Paasimaa S; Törmälä P Proc Inst Mech Eng H; 2000; 214(6):615-29. PubMed ID: 11201409 [TBL] [Abstract][Full Text] [Related]
12. [Effects of chitin and chitosan on degradation of DL-polylactide in vitro]. Liao K; Tang F; Luo L; Lu Z; Huang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Sep; 16(3):267-70. PubMed ID: 12552741 [TBL] [Abstract][Full Text] [Related]
13. A strategy for controlling degradation in vitro of carbon fiber-reinforced polylactic acid composites (by combining fiber modification and pulsed electromagnetic fields). Zhang D; Qi J; Qiao S; Liu L; Wang B; Zhao Z J Biomater Sci Polym Ed; 2018 Nov; 29(16):1964-1977. PubMed ID: 30141735 [TBL] [Abstract][Full Text] [Related]
14. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid). Wright-Charlesworth DD; King JA; Miller DM; Lim CH J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480 [TBL] [Abstract][Full Text] [Related]
15. Preparation of polylactic acid/chitin composite material and its safety evaluation by animal experiments. Mou SS; Ma AD; Tu M; Li LH; Zhou CR Di Yi Jun Yi Da Xue Xue Bao; 2003 Mar; 23(3):245-7. PubMed ID: 12651242 [TBL] [Abstract][Full Text] [Related]
17. Processing and characterization of absorbable polylactide polymers for use in surgical implants. Andriano KP; Pohjonen T; Törmälä P J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072 [TBL] [Abstract][Full Text] [Related]
18. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments. Latour RA; Black J J Biomed Mater Res; 1992 May; 26(5):593-606. PubMed ID: 1512281 [TBL] [Abstract][Full Text] [Related]
19. Novel injectable and in situ curable glycolide/lactide based biodegradable polymer resins and composites. Xie D; Park JG; Zhao J; Turner CH J Biomater Appl; 2007 Jul; 22(1):33-54. PubMed ID: 16920760 [TBL] [Abstract][Full Text] [Related]
20. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite. Ellakwa AE; Shortall AC; Marquis PM J Prosthet Dent; 2002 Nov; 88(5):485-90. PubMed ID: 12473997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]