These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12557780)

  • 21. Reconstruction of thermal property distributions of tissue phantoms from temperature measurements--thermal conductivity, thermal capacity and thermal diffusivity.
    Sumi C; Yanagimura H
    Phys Med Biol; 2007 May; 52(10):2845-63. PubMed ID: 17473355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A soft-computing methodology for noninvasive time-spatial temperature estimation.
    Teixeira CA; Ruano MG; Ruano AE; Pereira WC
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):572-80. PubMed ID: 18269992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Waveform diversity based ultrasound system for hyperthermia treatment of breast cancer.
    Guo B; Li J
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 2):822-6. PubMed ID: 18270027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours.
    Novák P; Moros EG; Parry JJ; Rogers BE; Myerson RJ; Zeug A; Locke JE; Rossin R; Straube WL; Singh AK
    Phys Med Biol; 2005 Nov; 50(21):5127-39. PubMed ID: 16237245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours.
    Singh AK; Moros EG; Novak P; Straube W; Zeug A; Locke JE; Myerson RJ
    Int J Hyperthermia; 2004 Feb; 20(1):32-44. PubMed ID: 14612312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An easy-to-use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies.
    Demura K; Morikawa S; Murakami K; Sato K; Shiomi H; Naka S; Kurumi Y; Inubushi T; Tani T
    J Surg Res; 2006 Sep; 135(1):179-86. PubMed ID: 16580694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques.
    Amini AN; Ebbini ES; Georgiou TT
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):221-8. PubMed ID: 15709659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasound phase-contrast transmission imaging of localized thermal variation and the identification of fat/tissue boundaries.
    Clement GT; Hynynen K
    Phys Med Biol; 2005 Apr; 50(7):1585-600. PubMed ID: 15798345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature data analysis for 22 patients with advanced cervical carcinoma treated in Rotterdam using radiotherapy, hyperthermia and chemotherapy: a reference point is needed.
    Fatehi D; van der Zee J; van der Wal E; Van Wieringen WN; Van Rhoon GC
    Int J Hyperthermia; 2006 Jun; 22(4):353-63. PubMed ID: 16754355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of noninvasive core temperature measurement in acutely ill adults: the state of the science.
    Hooper VD; Andrews JO
    Biol Res Nurs; 2006 Jul; 8(1):24-34. PubMed ID: 16766626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element modeling of the temperature rise due to the propagation of ultrasonic waves in viscoelastic materials and experimental validation.
    Hosten B; Bacon C; Biateau C
    J Acoust Soc Am; 2008 Dec; 124(6):3491-6. PubMed ID: 19206778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.
    Manaf NA; Aziz MN; Ridzuan DS; Mohamad Salim MI; Wahab AA; Lai KW; Hum YC
    Med Biol Eng Comput; 2016 Jun; 54(6):967-81. PubMed ID: 27039402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous measurements of local tissue temperature and blood perfusion rate in the canine prostate during radio frequency thermal therapy.
    Zhu L; Pang L; Xu LX
    Biomech Model Mechanobiol; 2005 Aug; 4(1):1-9. PubMed ID: 15940507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Techniques for temperature monitoring during laser-induced thermotherapy: an overview.
    Saccomandi P; Schena E; Silvestri S
    Int J Hyperthermia; 2013 Nov; 29(7):609-19. PubMed ID: 24032415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound.
    Seip R; Ebbini ES
    IEEE Trans Biomed Eng; 1995 Aug; 42(8):828-39. PubMed ID: 7642197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A thermometry system for quality assurance and documentation of whole body hyperthermia procedures.
    Hjertaker BT; Frøystein T; Schem BC
    Int J Hyperthermia; 2005 Feb; 21(1):45-55. PubMed ID: 15764350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation-induced temperature changes in biological samples.
    Chen YY; Wood AW
    Bioelectromagnetics; 2009 Oct; 30(7):583-90. PubMed ID: 19507188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry.
    Straube WL; Arthur RM
    Ultrasound Med Biol; 1994; 20(9):915-22. PubMed ID: 7886851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.