BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1255786)

  • 1. Protective effects of amphotericin B against spontaneous and transplantable murine tumors.
    Valeriote F; Lynch R; Medoff G; Kumar BV
    J Natl Cancer Inst; 1976 Mar; 56(3):557-60. PubMed ID: 1255786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation by amphotericin B of the cytotoxicity of anticancer agents against MOPC-315 plasmacytoma and Lewis lung carcinoma.
    Valeriote F; Dieckman J; Flentje D; Flentje M; Medoff G
    Cancer Chemother Pharmacol; 1984; 13(2):126-30. PubMed ID: 6467497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of transplanted AKR leukemia to combination therapy with amphotericin B and 1,3-bis(2-chloroethyl)-1-nitrosourea: dose and schedule dependency.
    Medoff G; Valeriote F; Ryan J; Tolen S
    J Natl Cancer Inst; 1977 Apr; 58(4):949-53. PubMed ID: 845998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphotericin B potentiation of the cytotoxicity of anticancer agents against both normal hematopoietic and leukemia cells in mice.
    Valeriote F; Medoff G; Tolen S; Dieckman J
    J Natl Cancer Inst; 1984 Aug; 73(2):475-82. PubMed ID: 6589439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological effects of Corynebacterium parvum. 3. Amplification of resistance and impairment of active immunity to murine tumours.
    Smith SE; Scott MT
    Br J Cancer; 1972 Oct; 26(5):361-7. PubMed ID: 4343677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum pseudouridine as a biochemical marker in the development of AKR mouse lymphoma.
    Russo T; Colonna A; Salvatore F; Cimino F; Bridges S; Gurgo C
    Cancer Res; 1984 Jun; 44(6):2567-70. PubMed ID: 6722793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect of amphotericin B and 1,3-bis(2-chloroethyl)-1-nitrosourea against a transplantable AKR leukemia.
    Medoff G; Valeriote F; Lynch RG; Schlessinger D; Kobayashi GS
    Cancer Res; 1974 May; 34(5):974-8. PubMed ID: 4823906
    [No Abstract]   [Full Text] [Related]  

  • 8. Adoptive immunotherapy of spontaneous leukemia-lymphoma in AKR mice.
    Bortin MM; Truitt RL; Rose WC; Rimm AA; Saltzstein EC
    Adv Exp Med Biol; 1976; 73 Pt B():331-9. PubMed ID: 793340
    [No Abstract]   [Full Text] [Related]  

  • 9. Schedule-dependent potentiation of lomustine cytotoxicity by amphotericin B in mice.
    Valeriote F; Dieckman J; Chabot G
    J Natl Cancer Inst; 1986 Mar; 76(3):521-5. PubMed ID: 3456466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and rejection of leukemia cells in individual mice after combined treatment with amphotericin B and 1,3-bis(2-chloroethyl)-1-nitrosourea.
    Valeriote F; Lynch R; Medoff G; Tolen S; Dieckman J
    J Natl Cancer Inst; 1978 Aug; 61(2):399-402. PubMed ID: 277727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graft versus leukemia. VI. Adoptive immunotherapy in combination with chemoradiotherapy for spontaneous leukemia-lymphoma in AKR mice.
    Bortin MM; Rose WC; Truitt RL; Rimm AA; Saltzstein EC; Rodey GE
    J Natl Cancer Inst; 1975 Nov; 55(5):1227-9. PubMed ID: 1546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea by amphotericin B in murine ependymoblastoma.
    Laurent G; Atassi G; Hildebrand J
    Cancer Res; 1976 Nov; 36(11 Pt 1):4069-73. PubMed ID: 975049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary observations on the effect of glucan in combination with radiation and chemotherapy in four murine tumors.
    Stewart CC; Valeriote FA; Perez CA
    Cancer Treat Rep; 1978 Nov; 62(11):1867-72. PubMed ID: 728904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity and induction of resistance to Listeria monocytogenes infection by amphotericin B in inbred strains of mice.
    Brajtburg J; Elberg S; Kobayashi GS; Medoff G
    Infect Immun; 1986 Nov; 54(2):303-7. PubMed ID: 3770945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of amphotericin B on the survival of brain-tumor-bearing mice treated with CCNU.
    Muller PJ; Tator CH
    J Neurosurg; 1978 Oct; 49(4):579-88. PubMed ID: 690687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose chemotherapy as a prelude to intensive treatment of spontaneous leukemia-lymphoma in AKR mice.
    Rose WC; Rimm AA; Saltzstein EC; Truitt RL; Bortin MM
    J Natl Cancer Inst; 1975 Jul; 55(1):219-21. PubMed ID: 1159816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo distribution and therapeutic efficacy of a novel amphotericin B poly-aggregated formulation.
    Espada R; Valdespina S; Dea MA; Molero G; Ballesteros MP; Bolás F; Torrado JJ
    J Antimicrob Chemother; 2008 May; 61(5):1125-31. PubMed ID: 18285313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumour immunoprophylaxis in mice using glutaraldehyde-treated syngeneic myeloma cells.
    Ben-Efraim S; Ophir R; Relyveld EH
    Br J Cancer; 1981 Apr; 43(4):554-7. PubMed ID: 6786316
    [No Abstract]   [Full Text] [Related]  

  • 19. The allogeneic effect on tumor growth. II. Suppression of both ascitic and solid MOPC 315 plasmacytoma by the graft-vs-host reaction, with pathologic correlation.
    Osborne DP; Katz DH
    J Immunol; 1977 Apr; 118(4):1449-55. PubMed ID: 15035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunopotentiating effects of amphotericin B. I. Enhanced contact sensitivity in mice.
    Shirley SF; Little JR
    J Immunol; 1979 Dec; 123(6):2878-82. PubMed ID: 501094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.