BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 12557974)

  • 1. Validation of a pencil beam model-based treatment planning system for fast neutron therapy.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2003 Jan; 30(1):21-6. PubMed ID: 12557974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study.
    Söderberg J; Carlsson GA
    Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations.
    Pignol JP; Cuendet P; Brassart N; Fares G; Colomb F; M'Bake Diop C; Sabattier R; Hachem A; Prevot G
    Med Phys; 1998 Jun; 25(6):885-91. PubMed ID: 9650176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute dosimetry in a d(14 MeV) + Be fast neutron beam.
    Bourhis-Martin E; Brede HJ; Greif KD; Baumhoer W; Rassow J; Sauerwein W
    Med Phys; 2004 Apr; 31(4):832-8. PubMed ID: 15125001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo evaluation of a photon pencil kernel algorithm applied to fast neutron therapy treatment planning.
    Söderberg J; Alm Carlsson G; Ahnesjö A
    Phys Med Biol; 2003 Oct; 48(20):3327-44. PubMed ID: 14620061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.
    Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S
    Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pencil beam kernel-based dose calculations on CT data for a mixed neutron-gamma fission field applying tissue correction factors.
    Sommer LB; Kampfer S; Chemnitz T; Breitkreutz H; Combs SE; Wilkens JJ
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38241727
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of tissue heterogeneity and comparisons of collapsed cone and Monte Carlo fast neutron patient dosimetry using the University of Washington clinical neutron therapy system (CNTS).
    Moffitt GB; Sandison GA; Argento DC; Emery R; Wootton LS; Parvathaneni U; Liao JJ; Laramore GE; Stewart RD
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37983905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the Pinnacle³ photon convolution-superposition algorithm applied to fast neutron beams.
    Kalet AM; Sandison GA; Phillips MH; Parvathaneni U
    J Appl Clin Med Phys; 2013 Nov; 14(6):4305. PubMed ID: 24257274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inclusion of compensator-induced scatter and beam filtration in pencil beam dose calculations.
    du Plessis FC; Willemse CA
    Med Phys; 2006 Aug; 33(8):2896-904. PubMed ID: 16964866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of an extra-focal electron source to model collimator-scattered electrons using the pencil-beam redefinition algorithm.
    Boyd RA; Hogstrom KR; White RA; Antolak JA
    Med Phys; 2002 Nov; 29(11):2571-83. PubMed ID: 12462724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wedge factor dependence with depth and field size for fast neutron beams.
    Popescu A; Risler R
    Phys Med Biol; 2003 Jul; 48(14):2123-31. PubMed ID: 12894974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First steps towards a fast-neutron therapy planning program.
    Garny S; Rühm W; Zankl M; Wagner FM; Paretzke HG
    Radiat Oncol; 2011 Nov; 6():163. PubMed ID: 22118299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen].
    Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H
    Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.