BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 12557974)

  • 21. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scattering kernels for fast neutron therapy treatment planning.
    Moffitt GB; Wootton LS; Hårdemark B; Sandison GA; Laramore GE; Parvathaneni U; Stewart RD
    Phys Med Biol; 2020 Aug; 65(16):165009. PubMed ID: 32512540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling skin collimation using the electron pencil beam redefinition algorithm.
    Chi PC; Hogstrom KR; Starkschall G; Antolak JA; Boyd RA
    Med Phys; 2005 Nov; 32(11):3409-18. PubMed ID: 16370427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.
    Faddegon BA; Villarreal-Barajas JE
    Med Phys; 2005 Nov; 32(11):3286-94. PubMed ID: 16370417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm.
    Newhauser W; Fontenot J; Zheng Y; Polf J; Titt U; Koch N; Zhang X; Mohan R
    Phys Med Biol; 2007 Aug; 52(15):4569-84. PubMed ID: 17634651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy.
    Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of semiconductors for dosimetry of fast-neutron therapy beam.
    Yudelev M; Alyousef K; Brandon J; Perevertailo V; Lerch ML; Rosenfeld AB
    Radiat Prot Dosimetry; 2004; 110(1-4):573-8. PubMed ID: 15353711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE.
    Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I
    Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monte Carlo calculation of dose enhancement by neutron capture of 10B in fast neutron therapy.
    Pöller F; Sauerwein W; Rassow J
    Phys Med Biol; 1993 Mar; 38(3):397-410. PubMed ID: 8451283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Electron fields in clinical application. A comparison of pencil beam and Monte Carlo algorithm].
    Treutwein M; Bogner L
    Strahlenther Onkol; 2007 Aug; 183(8):454-8. PubMed ID: 17680226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy.
    Kry SF; Howell RM; Salehpour M; Followill DS
    Med Phys; 2009 Apr; 36(4):1244-50. PubMed ID: 19472632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy.
    Mijnheer BJ
    Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
    De Smet V; Stichelbaut F; Vanaudenhove T; Mathot G; De Lentdecker G; Dubus A; Pauly N; Gerardy I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):417-21. PubMed ID: 24255173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.
    Nigg DW; Wemple CA; Risler R; Hartwell JK; Harker YD; Laramore GE
    Med Phys; 2000 Feb; 27(2):359-67. PubMed ID: 10718140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems.
    Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM
    Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room.
    Englbrecht FS; Trinkl S; Mares V; Rühm W; Wielunski M; Wilkens JJ; Hillbrand M; Parodi K
    Z Med Phys; 2021 May; 31(2):215-228. PubMed ID: 33622567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microdosimetric specification of the radiation quality of a d(48.5)+Be fast neutron therapy beam produced by a superconducting cyclotron.
    Kota C; Maughan RL
    Med Phys; 1996 Sep; 23(9):1591-9. PubMed ID: 8892257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.
    Goorley JT; Kiger WS; Zamenhof RG
    Med Phys; 2002 Feb; 29(2):145-56. PubMed ID: 11865986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of variation in the energy spectrum of a cyclotron-produced fast neutron beam in a phantom relevant to its application in radiotherapy.
    Bonnett DE; Parnell CJ
    Br J Radiol; 1982 Jan; 55(649):48-55. PubMed ID: 6797499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.