These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12558157)

  • 1. Quantitative structure-biodegradation relationship study for biodegradation rates of substituted benzenes by river bacteria.
    Lu GH; Wang C; Bao GZ
    Environ Toxicol Chem; 2003 Feb; 22(2):272-5. PubMed ID: 12558157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation study of toxicity of substituted phenols to river bacteria and their biodegradability in river water.
    Yuan X; Lu GH; Su LM
    Biomed Environ Sci; 2005 Oct; 18(5):281-5. PubMed ID: 16370309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative structure-activity relationships of joint toxicity of 3, 4-dichloroaniline and substituted aromatics].
    Lu GH; Wu H; Chen ZY; Li Y
    Huan Jing Ke Xue; 2009 Oct; 30(10):3104-9. PubMed ID: 19968139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationships for the toxicity of substituted benzenes to Cyprinus carpio.
    Lu GH; Wang C; Yuan X; Lang PZ
    Biomed Environ Sci; 2005 Feb; 18(1):53-7. PubMed ID: 15861779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in bacterial community during biodegradation of aniline.
    Tani K; Masuhara M; Welikala N; Yamaguchi N; Nasu M
    J Appl Microbiol; 1998 May; 84(5):859-64. PubMed ID: 9729107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-biodegradability relationships of substituted benzenes and their biodegradability in river water.
    Lu GH; Zhao YH; Yang SG; Cheng XJ
    Bull Environ Contam Toxicol; 2002 Jul; 69(1):111-6. PubMed ID: 12053264
    [No Abstract]   [Full Text] [Related]  

  • 8. Relative abundance and the relationships between aniline, phenol and catechol degraders in fresh water.
    Nasu M; Goonewardena N; Kogame R; Yamaguchi N; Tani K; Kondo M
    Biomed Environ Sci; 1993 Mar; 6(1):95-101. PubMed ID: 8476539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs.
    Aruoja V; Sihtmäe M; Dubourguier HC; Kahru A
    Chemosphere; 2011 Sep; 84(10):1310-20. PubMed ID: 21664645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationships for joint toxicity of substituted phenols and anilines to Scenedesmus obliquus.
    Wang C; Lu G; Tang Z; Guo X
    J Environ Sci (China); 2008; 20(1):115-9. PubMed ID: 18572533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.
    Lee Y; von Gunten U
    Water Res; 2012 Dec; 46(19):6177-95. PubMed ID: 22939392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols.
    Damborsky J; Schultz TW
    Chemosphere; 1997 Feb; 34(2):429-46. PubMed ID: 9057301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between properties of a series of anilines and their transformation by bacteria.
    Paris DF; Wolfe NL
    Appl Environ Microbiol; 1987 May; 53(5):911-6. PubMed ID: 3606098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pKa prediction from an ab initio bond length: part 3--benzoic acids and anilines.
    Harding AP; Popelier PL
    Phys Chem Chem Phys; 2011 Jun; 13(23):11283-93. PubMed ID: 21573302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Simulation of biodegradation of petroleum contaminants in natural waters of the Yellow River].
    Xia XH; Zhou JS; Yu H; Yang ZF
    Huan Jing Ke Xue; 2004 Jan; 25(1):103-6. PubMed ID: 15330432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution.
    Erickson PR; Walpen N; Guerard JJ; Eustis SN; Arey JS; McNeill K
    J Phys Chem A; 2015 Apr; 119(13):3233-43. PubMed ID: 25742158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on biodegradation of phenols in river water].
    Zhao J; Zhang K; Li C; Luo P
    Hua Xi Yi Ke Da Xue Xue Bao; 2000 Sep; 31(3):367-9. PubMed ID: 12545836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute toxicity and n-octanol/water partition coefficients of substituted thiophenols: determination and QSAR analysis.
    Shi JQ; Cheng J; Wang FY; Flamm A; Wang ZY; Yang X; Gao SX
    Ecotoxicol Environ Saf; 2012 Apr; 78():134-41. PubMed ID: 22154146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biodegradation of LAS in the anaerobic water of a representative inlet of Lake Dianchi].
    Wang Z; Tu XH; Xiao BD; Wu XQ; Liu M; Chen XD
    Huan Jing Ke Xue; 2008 Aug; 29(8):2189-94. PubMed ID: 18839571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of biodegradation potential of organic compounds by river water microorganisms.
    Inoue D; Inaba M; Yu N; Shima Y; Ueno T; Sei K; Fujita M; Ike M
    Water Sci Technol; 2009; 59(2):317-22. PubMed ID: 19182343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.