These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12558252)

  • 1. Sound source reconstruction using inverse boundary element calculations.
    Schuhmacher A; Hald J; Rasmussen KB; Hansen PC
    J Acoust Soc Am; 2003 Jan; 113(1):114-27. PubMed ID: 12558252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Fifteen Algorithms for the Resolution of the Electrocardiography Imaging Inverse Problem Using
    Karoui A; Bear L; Migerditichan P; Zemzemi N
    Front Physiol; 2018; 9():1708. PubMed ID: 30555347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem.
    He X; Liang J; Qu X; Huang H; Hou Y; Tian J
    Int J Biomed Imaging; 2010; 2010():291874. PubMed ID: 20508845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method for regularization parameter determination in the inverse problem of electrocardiography.
    Johnston PR; Gulrajani RM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography.
    Feng J; Qin C; Jia K; Han D; Liu K; Zhu S; Yang X; Tian J
    Med Phys; 2011 Nov; 38(11):5933-44. PubMed ID: 22047358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging.
    Chamorro-Servent J; Dubois R; Coudière Y
    Front Physiol; 2019; 10():273. PubMed ID: 30971937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of different choices for the regularization parameter in inverse electrocardiography models.
    Shou G; Jiang M; Xia L; Wei Q; Liu F; Crozier S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3903-6. PubMed ID: 17945815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound field reconstruction using inverse boundary element method and sparse regularization.
    Bi CX; Liu Y; Zhang YB; Xu L
    J Acoust Soc Am; 2019 May; 145(5):3154. PubMed ID: 31153303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG source distribution localization using minimum-product and CRESO criteria for Tikhonov regularization.
    Vazouras CN
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4457-60. PubMed ID: 17271295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of vibroacoustic fields in half-space by using hybrid near-field acoustical holography.
    Zhao X; Wu SF
    J Acoust Soc Am; 2005 Feb; 117(2):555-65. PubMed ID: 15759677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On epicardial potential reconstruction using regularization schemes with the L1-norm data term.
    Shou G; Xia L; Liu F; Jiang M; Crozier S
    Phys Med Biol; 2011 Jan; 56(1):57-72. PubMed ID: 21119225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Burton-Miller inverse boundary element method for near-field acoustic holography.
    Chappell DJ; Harris PJ
    J Acoust Soc Am; 2009 Jul; 126(1):149-57. PubMed ID: 19603872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous Bayesian regularization applied to real-time near-field acoustic holography.
    Le Magueresse T; Thomas JH; Antoni J; Paillasseur S
    J Acoust Soc Am; 2017 Aug; 142(2):924. PubMed ID: 28863597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated image reconstruction using extrapolated Tikhonov filtering for photoacoustic tomography.
    Gutta S; Kalva SK; Pramanik M; Yalavarthy PK
    Med Phys; 2018 Jun; ():. PubMed ID: 29856489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time domain imaging of extended transient noise sources using phase coherence.
    Bilodeau M; Quaegebeur N; Robin O; O'Donoughue P; Masson P; Berry A
    J Acoust Soc Am; 2019 Dec; 146(6):4851. PubMed ID: 31893759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regularization methods for near-field acoustical holography.
    Williams EG
    J Acoust Soc Am; 2001 Oct; 110(4):1976-88. PubMed ID: 11681378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography.
    Wang Q; Wang H; Zhang R; Wang J; Zheng Y; Cui Z; Yang C
    Rev Sci Instrum; 2012 Oct; 83(10):104707. PubMed ID: 23126790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter.
    Berrier KL; Sorensen DC; Khoury DS
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):507-15. PubMed ID: 15000381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A boundary element method based near field acoustic holography in noisy environments.
    Wu H; Li D; Yu L; Jiang W
    J Acoust Soc Am; 2020 May; 147(5):3360. PubMed ID: 32486772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.