BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 12558278)

  • 1. Ear-canal acoustic admittance and reflectance measurements in human neonates. II. Predictions of middle-ear in dysfunction and sensorineural hearing loss.
    Keefe DH; Gorga MP; Neely ST; Zhao F; Vohr BR
    J Acoust Soc Am; 2003 Jan; 113(1):407-22. PubMed ID: 12558278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ear-canal acoustic admittance and reflectance effects in human neonates. I. Predictions of otoacoustic emission and auditory brainstem responses.
    Keefe DH; Zhao F; Neely ST; Gorga MP; Vohr BR
    J Acoust Soc Am; 2003 Jan; 113(1):389-406. PubMed ID: 12558277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflectance Measures from Infant Ears With Normal Hearing and Transient Conductive Hearing Loss.
    Voss SE; Herrmann BS; Horton NJ; Amadei EA; Kujawa SG
    Ear Hear; 2016; 37(5):560-71. PubMed ID: 27050773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance.
    Norton SJ; Gorga MP; Widen JE; Folsom RC; Sininger Y; Cone-Wesson B; Vohr BR; Mascher K; Fletcher K
    Ear Hear; 2000 Oct; 21(5):508-28. PubMed ID: 11059707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband Absorbance Outcomes in Newborns: A Comparison With High-Frequency Tympanometry, Automated Brainstem Response, and Transient Evoked and Distortion Product Otoacoustic Emissions.
    Aithal S; Kei J; Driscoll C; Khan A; Swanston A
    Ear Hear; 2015; 36(5):e237-50. PubMed ID: 25951046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Otoacoustic emissions. A futuristic objective hearing test].
    Plinkert PK
    Fortschr Med; 1993 Oct; 111(29):453-6. PubMed ID: 8258421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distortion product otoacoustic emissions for hearing threshold estimation and differentiation between middle-ear and cochlear disorders in neonates.
    Janssen T; Gehr DD; Klein A; Müller J
    J Acoust Soc Am; 2005 May; 117(5):2969-79. PubMed ID: 15957767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early detection of neonatal hearing loss by otoacoustic emissions and auditory brainstem response over 10 years of experience.
    Escobar-Ipuz FA; Soria-Bretones C; García-Jiménez MA; Cueto EM; Torres Aranda AM; Sotos JM
    Int J Pediatr Otorhinolaryngol; 2019 Dec; 127():109647. PubMed ID: 31470205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit.
    Gouws N; Swanepoel W; De Jager LB
    S Afr J Commun Disord; 2017 Jun; 64(1):e1-e11. PubMed ID: 28697607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A comparison of auditory brainstem responses and otoacoustic emissions in hearing screening of high-risk neonates].
    Xu FL; Xing QJ; Cheng XY
    Zhongguo Dang Dai Er Ke Za Zhi; 2008 Aug; 10(4):460-3. PubMed ID: 18706161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of audiological results of patients referred from newborn hearing screening program.
    Song CI; Kang HS; Ahn JH
    Acta Otolaryngol; 2015; 135(11):1113-8. PubMed ID: 26144243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB; Keefe DH; Hunter LL; Garinis AC; Fitzpatrick DF; McMillan GP; Feeney MP
    Ear Hear; 2017; 38(4):507-520. PubMed ID: 28437273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of conductive hearing loss in mice.
    Qin Z; Wood M; Rosowski JJ
    Hear Res; 2010 May; 263(1-2):93-103. PubMed ID: 19835942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound-conduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: test performance of wideband acoustic transfer functions and 1-kHz tympanometry.
    Sanford CA; Keefe DH; Liu YW; Fitzpatrick D; McCreery RW; Lewis DE; Gorga MP
    Ear Hear; 2009 Dec; 30(6):635-52. PubMed ID: 19701089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Otosclerosis with Aural Acoustical Tests of Absorbance, Group Delay, Acoustic Reflex Threshold, and Otoacoustic Emissions.
    Keefe DH; Archer KL; Schmid KK; Fitzpatrick DF; Feeney MP; Hunter LL
    J Am Acad Audiol; 2017 Oct; 28(9):838-860. PubMed ID: 28972472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive Accuracy of Sweep Frequency Impedance Technology in Identifying Conductive Conditions in Newborns.
    Aithal V; Kei J; Driscoll C; Murakoshi M; Wada H
    J Am Acad Audiol; 2018 Feb; 29(2):106-117. PubMed ID: 29401058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audiologic evaluation of neonates with severe hyperbilirubinemia using transiently evoked otoacoustic emissions and auditory brainstem responses.
    Rhee CK; Park HM; Jang YJ
    Laryngoscope; 1999 Dec; 109(12):2005-8. PubMed ID: 10591364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transitory evoked and distortion products of otoacoustic emissions in absent auditory evoked potentials].
    Schöler C; Schönweiler R; Ptok M
    HNO; 1997 Dec; 45(12):1008-15. PubMed ID: 9486382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical investigation on spontaneous otoacoustic emission (SOAE) in 447 ears.
    Kuroda T
    Auris Nasus Larynx; 2007 Mar; 34(1):29-38. PubMed ID: 17116381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.