These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12558294)

  • 41. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new transportable shock-wave lithotripsy machine for managing urinary stones: a single-centre experience with a dual-focus lithotripter.
    De Sio M; Autorino R; Quarto G; Mordente S; Giugliano F; Di Giacomo F; Neri F; Quattrone C; Sorrentino D; De Domenico R; D'Armiento M
    BJU Int; 2007 Nov; 100(5):1137-41. PubMed ID: 17550410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage.
    Lokhandwalla M; Sturtevant B
    Phys Med Biol; 2000 Jul; 45(7):1923-40. PubMed ID: 10943929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence.
    Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL
    J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy shielding by cavitation bubble clouds in burst wave lithotripsy.
    Maeda K; Maxwell AD; Colonius T; Kreider W; Bailey MR
    J Acoust Soc Am; 2018 Nov; 144(5):2952. PubMed ID: 30522301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study.
    Zhong P; Lin H; Xi X; Zhu S; Bhogte ES
    J Acoust Soc Am; 1999 Mar; 105(3):1997-2009. PubMed ID: 10089617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A prototype device for nonimmersion shock wave lithotripsy using ultrasonography for calculus localization.
    Marshall FF; Weiskopf F; Singh A; Mark F; Leo F; Sanders R; Makofski R; Walsh PC; Smith N
    J Urol; 1988 Aug; 140(2):249-53. PubMed ID: 3294438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Extra-corporal shock wave lithotripsy using the HM3 Dornier lithotripter with a modified shock wave generator. Initial clinical reports of experiences].
    Muschter R; Kutscher KR; Böhle A; Schmeller NT; Renner P; Bünner G; Hofstetter AG; Hofsäss S; Forssmann B
    Urologe A; 1987 Jan; 26(1):33-5. PubMed ID: 3576862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new pressure wave generator for extracorporeal lithotripsy.
    Marlinghaus EH; Wess OJ; Katona J
    Biomed Tech (Berl); 1990; 35 Suppl 3():235-6. PubMed ID: 2078710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of mobile extracorporeal shock wave lithotripter: experience in a pediatric institution.
    Defoor W; Dharamsi N; Smith P; Sekhon D; Colombo J; Riden D; Reddy P; Sheldon C; Minevich E
    Urology; 2005 Apr; 65(4):778-81. PubMed ID: 15833527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study.
    You D; Park J; Hong B; Park HK
    Scand J Urol Nephrol; 2010 Sep; 44(4):236-41. PubMed ID: 20446817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extracorporeal shock wave lithotripsy with a transportable electrohydraulic lithotripter: experience with >300 patients.
    Albala DM; Siddiqui KM; Fulmer B; Alioto J; Frankel J; Monga M
    BJU Int; 2005 Sep; 96(4):603-7. PubMed ID: 16104918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Quantitative evaluation of cavitation bubble fields induced by lithotripter shock waves].
    Luderer T; Bohris C; Bellemann ME
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():790-3. PubMed ID: 12465304
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro comminution of model renal calculi using histotripsy.
    Duryea AP; Maxwell AD; Roberts WW; Xu Z; Hall TL; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):971-80. PubMed ID: 21622053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Limitations of extracorporeal shock wave lithotripsy.
    Madaan S; Joyce AD
    Curr Opin Urol; 2007 Mar; 17(2):109-13. PubMed ID: 17285020
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Principles and application of extracorporeal shock wave lithotripsy.
    Robinson SN; Crane VS; Jones DG; Cochran JS; Williams OB
    Am J Hosp Pharm; 1987 Apr; 44(4):805-10. PubMed ID: 3578316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro.
    Sokolov DL; Bailey MR; Crum LA
    Ultrasound Med Biol; 2003 Jul; 29(7):1045-52. PubMed ID: 12878251
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.