These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 12558390)
1. Catalysis of the beta-elimination of HF from isomeric 2-fluoroethylpyridines and 1-methyl-2-fluoroethylpyridinium salts. Proton-activating factors and methyl-activating factors as a mechanistic test to distinguish between concerted E2 and E1cb irreversible mechanisms. Alunni S; Laureti V; Ottavi L; Ruzziconi R J Org Chem; 2003 Feb; 68(3):718-25. PubMed ID: 12558390 [TBL] [Abstract][Full Text] [Related]
2. Metal ion catalysis in the beta-elimination reactions of N-[2-(4-pyridyl)ethyl]quinuclidinium and N-[2-(2-pyridyl)ethyl]quinuclidinium in aqueous solution. Alunni S; Del Giacco T; De Maria P; Fifi G; Fontana A; Ottavi L; Tesei I J Org Chem; 2004 May; 69(10):3276-81. PubMed ID: 15132532 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of acid-base catalysis of beta-elimination reactions in systems activated by a pyridine ring. Alunni S; Ottavi L J Org Chem; 2004 Apr; 69(7):2272-83. PubMed ID: 15049619 [TBL] [Abstract][Full Text] [Related]
4. Evidence of a borderline region between E1cb and E2 elimination reaction mechanisms: a combined experimental and theoretical study of systems activated by the pyridine ring. Alunni S; De Angelis F; Ottavi L; Papavasileiou M; Tarantelli F J Am Chem Soc; 2005 Nov; 127(43):15151-60. PubMed ID: 16248656 [TBL] [Abstract][Full Text] [Related]
5. Ab initio molecular dynamics simulations of elimination reactions in water solution: exploring the borderline region between the E1cb and E2 reaction mechanisms. De Angelis F; Tarantelli F; Alunni S J Phys Chem B; 2006 Jun; 110(22):11014-9. PubMed ID: 16771355 [TBL] [Abstract][Full Text] [Related]
6. A study of the OH- -induced beta-elimination reactions of 2-(4-chloroethyl)pyridine, 2-(2-chloroethyl)pyridine, 1-methyl-2-(4-chloroethyl)pyridinium iodide and 1-methyl-2-(2-chloroethyl)pyridinium iodide in acetonitrile/water. Alunni S; Del Giacco T; De Maria P; Fontana A; Gasbarri C; Ottavi L J Org Chem; 2004 Sep; 69(18):6121-3. PubMed ID: 15373498 [TBL] [Abstract][Full Text] [Related]
7. Comparative kinetics and mechanism of oxygen and sulfur atom transfer reactions mediated by bis(dithiolene) complexes of molybdenum and tungsten. Wang JJ; Kryatova OP; Rybak-Akimova EV; Holm RH Inorg Chem; 2004 Dec; 43(25):8092-101. PubMed ID: 15578849 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and mechanisms of the pyridinolysis of phenyl and 4-nitrophenyl chlorothionoformates. Formation and hydrolysis of 1-(aryloxythiocarbonyl)pyridinium cations. Castro EA; Cubillos M; Santos JG J Org Chem; 2004 Jul; 69(14):4802-7. PubMed ID: 15230606 [TBL] [Abstract][Full Text] [Related]
9. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis. Fox JM; Dmitrenko O; Liao LA; Bach RD J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and mechanism of the pyridinolysis of S-2,4-dinitrophenyl 4-substituted thiobenzoates. Castro EA; Aguayo R; Bessolo J; Santos JG J Org Chem; 2005 Apr; 70(9):3530-6. PubMed ID: 15844987 [TBL] [Abstract][Full Text] [Related]
11. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
12. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid. Harrison AG J Mass Spectrom; 2003 Feb; 38(2):174-87. PubMed ID: 12577284 [TBL] [Abstract][Full Text] [Related]
13. Reactions of hydrated electrons with pyridinium salts in aqueous solutions. Enomoto K; LaVerne JA J Phys Chem A; 2008 Dec; 112(48):12430-6. PubMed ID: 18989947 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in our mechanistic understanding of S(N)V reactions. Bernasconi CF; Rappoport Z Acc Chem Res; 2009 Aug; 42(8):993-1003. PubMed ID: 19522460 [TBL] [Abstract][Full Text] [Related]
15. Kinetics and mechanism of the benzenethiolysis of O-ethylS-(2,4-dinitrophenyl) and O-ethyl S-(2,4,6-trinitrophenyl) dithiocarbonates and O-methyl O-(2,4-dinitrophenyl) thiocarbonate. Castro EA; Pavez P; Santos JG J Org Chem; 2003 Nov; 68(23):9034-9. PubMed ID: 14604378 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and mechanisms of the oxidation of iodide and bromide in aqueous solutions by a trans-dioxoruthenium(VI) complex. Lam WW; Man WL; Wang YN; Lau TC Inorg Chem; 2008 Aug; 47(15):6771-8. PubMed ID: 18597422 [TBL] [Abstract][Full Text] [Related]
17. Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucan lyase. Lee SS; Yu S; Withers SG Biochemistry; 2003 Nov; 42(44):13081-90. PubMed ID: 14596624 [TBL] [Abstract][Full Text] [Related]
18. Pyridinium-derived N-heterocyclic carbene complexes of platinum: synthesis, structure and ligand substitution kinetics. Owen JS; Labinger JA; Bercaw JE J Am Chem Soc; 2004 Jul; 126(26):8247-55. PubMed ID: 15225067 [TBL] [Abstract][Full Text] [Related]
19. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages. Timoshkin AY; Schaefer HF J Am Chem Soc; 2003 Aug; 125(33):9998-10011. PubMed ID: 12914463 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, potentiometric, kinetic, and NMR Studies of 1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)-4,10-bis(methylenephosphonic acid) (DO2A2P) and its complexes with Ca(II), Cu(II), Zn(II) and lanthanide(III) ions. Kálmán FK; Baranyai Z; Tóth I; Bányai I; Király R; Brücher E; Aime S; Sun X; Sherry AD; Kovács Z Inorg Chem; 2008 May; 47(9):3851-62. PubMed ID: 18380456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]