These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12558999)

  • 1. Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate-putamen.
    Venton BJ; Michael DJ; Wightman RM
    J Neurochem; 2003 Jan; 84(2):373-81. PubMed ID: 12558999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular dopamine dynamics in rat caudate-putamen during experimenter-delivered and intracranial self-stimulation.
    Kilpatrick MR; Rooney MB; Michael DJ; Wightman RM
    Neuroscience; 2000; 96(4):697-706. PubMed ID: 10727788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient adenosine efflux in the rat caudate-putamen.
    Cechova S; Venton BJ
    J Neurochem; 2008 May; 105(4):1253-63. PubMed ID: 18194431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study.
    Wu Q; Reith ME; Walker QD; Kuhn CM; Carroll FI; Garris PA
    J Neurosci; 2002 Jul; 22(14):6272-81. PubMed ID: 12122086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of transient adenosine release and oxygen changes in the caudate-putamen.
    Wang Y; Venton BJ
    J Neurochem; 2017 Jan; 140(1):13-23. PubMed ID: 27314215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus.
    Wang H; Pickel VM
    J Comp Neurol; 2002 Jan; 442(4):392-404. PubMed ID: 11793342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct pharmacological regulation of evoked dopamine efflux in the amygdala and striatum of the rat in vivo.
    Garris PA; Wightman RM
    Synapse; 1995 Jul; 20(3):269-79. PubMed ID: 7570359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.
    Ross AE; Venton BJ
    J Neurochem; 2015 Jan; 132(1):51-60. PubMed ID: 25219576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat.
    Borland LM; Shi G; Yang H; Michael AC
    J Neurosci Methods; 2005 Aug; 146(2):149-58. PubMed ID: 15975664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing.
    Venton BJ; Zhang H; Garris PA; Phillips PE; Sulzer D; Wightman RM
    J Neurochem; 2003 Dec; 87(5):1284-95. PubMed ID: 14622108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional variations in the physiology of the rat caudate-putamen. 1. In vivo subregional effects of amphetamine on extracellular dopamine concentration.
    Glynn G; Ahmad SO
    J Neural Transm (Vienna); 2003 May; 110(5):443-60. PubMed ID: 12721808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evoked neuronal activity accompanied by transmitter release increases oxygen concentration in rat striatum in vivo but not in vitro.
    Zimmerman JB; Kennedy RT; Wightman RM
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):629-37. PubMed ID: 1618942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased extracellular DA and normal evoked DA release in the rat striatum after a partial lesion of the substantia nigra.
    Dentresangle C; Le Cavorsin M; Savasta M; Leviel V
    Brain Res; 2001 Mar; 893(1-2):178-85. PubMed ID: 11223005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrovascular and metabolic uncoupling in the caudate-putamen following unilateral lesion of the mesencephalic dopaminergic neurons in the rat.
    Mraovitch S; Calando Y; Onteniente B; Peschanski M; Seylaz J
    Neurosci Lett; 1993 Jul; 157(2):140-4. PubMed ID: 8233044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle.
    Shon YM; Chang SY; Tye SJ; Kimble CJ; Bennet KE; Blaha CD; Lee KH
    J Neurosurg; 2010 Mar; 112(3):539-48. PubMed ID: 19731995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional variations in the physiology of the rat caudate-putamen. 2. Effects of amphetamine and amphetamine induced dopamine release on basal and cortical stimulation evoked multiple unit activity.
    Glynn G; Ahmad SO
    J Neural Transm (Vienna); 2003 May; 110(5):461-85. PubMed ID: 12721809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct, real-time assessment of dopamine release autoinhibition in the rat caudate-putamen.
    Lee TH; Gee KR; Davidson C; Ellinwood EH
    Neuroscience; 2002; 112(3):647-54. PubMed ID: 12074906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of dopamine overflow and uptake processes in the extracellular fluid of the rat caudate nucleus with fast-scan in vivo voltammetry.
    May LJ; Kuhr WG; Wightman RM
    J Neurochem; 1988 Oct; 51(4):1060-9. PubMed ID: 2971098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat.
    Jackson BP; Wightman RM
    Brain Res; 1995 Mar; 674(1):163-6. PubMed ID: 7773688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time effects of N-methyl-D-aspartic acid on dopamine release in slices of rat caudate putamen: a study using fast cyclic voltammetry.
    Iravani MM; Kruk ZL
    J Neurochem; 1996 Mar; 66(3):1076-85. PubMed ID: 8769869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.