These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12559397)

  • 1. Melatonin prevents the increase in hydroxyl radical-spin trap adduct formation caused by the addition of cisplatin in vitro.
    Yoshida M; Fukuda A; Hara M; Terada A; Kitanaka Y; Owada S
    Life Sci; 2003 Feb; 72(15):1773-80. PubMed ID: 12559397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scavenging effect of melatonin on hydroxyl radicals generated by alloxan.
    Brömme HJ; Mörke W; Peschke D; Ebelt H; Peschke D
    J Pineal Res; 2000 Nov; 29(4):201-8. PubMed ID: 11068942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of barbituric acid into alloxan by hydroxyl radicals: interaction with melatonin and with other hydroxyl radical scavengers.
    Brömme HJ; Mörke W; Peschke E
    J Pineal Res; 2002 Nov; 33(4):239-47. PubMed ID: 12390507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence.
    Reiter RJ; Tan DX; Manchester LC; Qi W
    Cell Biochem Biophys; 2001; 34(2):237-56. PubMed ID: 11898866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clindamycin phosphate scavenges hydroxyl radical.
    Sato E; Kato M; Kohno M; Niwano Y
    Int J Dermatol; 2007 Nov; 46(11):1185-7. PubMed ID: 17988340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scavenging of reactive oxygen species by melatonin.
    Zang LY; Cosma G; Gardner H; Vallyathan V
    Biochim Biophys Acta; 1998 Nov; 1425(3):469-77. PubMed ID: 9838210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical scavenging activity of bisbenzylisoquinoline alkaloids and traditional prophylactics against chemotherapy-induced oral mucositis.
    Kaji H; Inukai Y; Maiguma T; Ono H; Teshima D; Hiramoto K; Makino K
    J Clin Pharm Ther; 2009 Apr; 34(2):197-205. PubMed ID: 19250140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines.
    Das KC; Misra HP
    Mol Cell Biochem; 2004 Jul; 262(1-2):127-33. PubMed ID: 15532717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of oxygen-centered radicals using EPR spin-trap DEPMPO: the effect of oxygen.
    Mojović M; Vuletić M; Bacić GG
    Ann N Y Acad Sci; 2005 Jun; 1048():471-5. PubMed ID: 16154980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of melatonin and related indoles with free radicals: a computational study.
    Turjanski AG; Rosenstein RE; Estrin DA
    J Med Chem; 1998 Sep; 41(19):3684-9. PubMed ID: 9733493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro.
    Bonnefont-Rousselot D; Collin F; Jore D; Gardès-Albert M
    J Pineal Res; 2011 Apr; 50(3):328-35. PubMed ID: 21244479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scavenging of superoxide anion radical and hydroxyl radical by novel thiazolyl-thiazolidine-2,4-dione compounds.
    Bozdağ-Dündar O; Gürkan S; Aboul-Enein HY; Kruk I; Kładna A
    Luminescence; 2009; 24(3):194-201. PubMed ID: 19347853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds.
    Kruk I; Bozdağ-Dündar O; Ertan R; Aboul-Enein HY; Michalska T
    Luminescence; 2009; 24(2):96-101. PubMed ID: 18785617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR).
    Han SK; Hwang TM; Yoon Y; Kang JW
    Chemosphere; 2011 Aug; 84(8):1095-101. PubMed ID: 21561642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further insights into the reaction of melatonin with hydroxyl radical.
    Horstman JA; Wrona MZ; Dryhurst G
    Bioorg Chem; 2002 Oct; 30(5):371-82. PubMed ID: 12485596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The scavenging of hydroxyl radical(.OH) by a prostacyclin analogue, taprostene.
    Arroyo CM; Wade JV; Ichimori K; Nakazawa H
    Chem Biol Interact; 1994 Apr; 91(1):29-38. PubMed ID: 8194123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of artifactual DMPO-OH spin adduct in acid solutions containing nitrite ions.
    Takayanagi T; Kimiya H; Ohyama T
    Free Radic Res; 2017; 51(7-8):739-748. PubMed ID: 28817986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species generated from the reaction of copper(II) complexes with biological reductants cause DNA strand scission.
    Ueda J; Takai M; Shimazu Y; Ozawa T
    Arch Biochem Biophys; 1998 Sep; 357(2):231-9. PubMed ID: 9735163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.