These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12559697)

  • 1. Risk assessment dosimetry model for inhaled particulate matter: II. Laboratory surrogates (rat).
    Martonen TB; Schroeter JD
    Toxicol Lett; 2003 Feb; 138(1-2):133-42. PubMed ID: 12559697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment dosimetry model for inhaled particulate matter: I. Human subjects.
    Martonen TB; Schroeter JD
    Toxicol Lett; 2003 Feb; 138(1-2):119-32. PubMed ID: 12559696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.
    Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J
    Part Fibre Toxicol; 2017 Jul; 14(1):24. PubMed ID: 28701167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhalation dosimetry modeling provides insights into regional respiratory tract toxicity of inhaled diacetyl.
    Cichocki JA; Morris JB
    Toxicology; 2017 Aug; 388():30-39. PubMed ID: 27851905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetry considerations for animal aerosol inhalation studies.
    Phalen RF; Mendez LB
    Biomarkers; 2009 Jul; 14 Suppl 1(Suppl 1):63-6. PubMed ID: 19604062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative risk analysis of particulate matter in the air: interspecies extrapolation with bioassay and mathematical models.
    Maruyama W; Hirano S; Kobayashi T; Aoki Y
    Inhal Toxicol; 2006 Dec; 18(13):1013-23. PubMed ID: 16966301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of airborne particulates on respiratory tract deposition of inhaled toluene and naphthalene in the rat.
    Roberts SM; Rohr AC; Mikheev VB; Munson J; Sabo-Attwood T
    Inhal Toxicol; 2018 Jan; 30(1):19-28. PubMed ID: 29465005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thoracic and respirable particle definitions for human health risk assessment.
    Brown JS; Gordon T; Price O; Asgharian B
    Part Fibre Toxicol; 2013 Apr; 10():12. PubMed ID: 23575443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosquito coil smoke inhalation toxicity. Part I: validation of test approach and acute inhalation toxicity.
    Pauluhn J
    J Appl Toxicol; 2006; 26(3):269-78. PubMed ID: 16547916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deposition of combustion aerosols in the human respiratory tract: comparison of theoretical predictions with experimental data considering nonspherical shape.
    Hofmann W; Morawska L; Winkler-Heil R; Moustafa M
    Inhal Toxicol; 2009 Dec; 21(14):1154-64. PubMed ID: 19827973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview of human exposure modeling activities at the USEPA's National Exposure Research Laboratory.
    Furtaw EJ
    Toxicol Ind Health; 2001 Jun; 17(5-10):302-14. PubMed ID: 12539877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract.
    Sánchez-Soberón F; Mari M; Kumar V; Rovira J; Nadal M; Schuhmacher M
    Environ Res; 2015 Nov; 143(Pt A):10-8. PubMed ID: 26408807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhalation toxicology.
    Hayes A; Bakand S
    EXS; 2010; 100():461-88. PubMed ID: 20358692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source and trajectories of inhaled particles from a surrounding environment and its deposition in the respiratory airway.
    Inthavong K; Ge QJ; Li X; Tu JY
    Inhal Toxicol; 2013 Apr; 25(5):280-91. PubMed ID: 23614729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors.
    Frederick CB; Lomax LG; Black KA; Finch L; Scribner HE; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB
    Toxicol Appl Pharmacol; 2002 Aug; 183(1):23-40. PubMed ID: 12217639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a chronic inhalation reference value for hexamethylenediamine using an exposure model based on the dihydrochloride salt.
    Myers JL; Grant RL
    Inhal Toxicol; 2015; 27(9):440-9. PubMed ID: 26213288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling particle deposition in human lungs: modelling concepts and comparison with experimental data.
    Hofmann W
    Biomarkers; 2009 Jul; 14 Suppl 1():59-62. PubMed ID: 19604061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.