These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12560207)

  • 1. Flow and pressure distributions in vascular networks consisting of distensible vessels.
    Krenz GS; Dawson CA
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2192-203. PubMed ID: 12560207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vessel distensibility and flow distribution in vascular trees.
    Krenz GS; Dawson CA
    J Math Biol; 2002 Apr; 44(4):360-74. PubMed ID: 11984645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A distensible vessel model applied to hypoxic pulmonary vasoconstriction in the neonatal pig.
    Nelin LD; Krenz GS; Rickaby DA; Linehan JH; Dawson CA
    J Appl Physiol (1985); 1993 May; 74(5):2049-56. PubMed ID: 8335529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple distensible vessel model for interpreting pulmonary vascular pressure-flow curves.
    Linehan JH; Haworth ST; Nelin LD; Krenz GS; Dawson CA
    J Appl Physiol (1985); 1992 Sep; 73(3):987-94. PubMed ID: 1400067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical method for estimating small vessel distensibility in humans.
    Patel DJ; Vaishnav RN; Coleman BR; Tearney RJ; Cothran LN; Currey CL
    Circ Res; 1988 Sep; 63(3):572-6. PubMed ID: 3409488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships.
    Forton K; Motoji Y; Deboeck G; Faoro V; Naeije R
    J Appl Physiol (1985); 2016 Nov; 121(5):1145-1150. PubMed ID: 27763874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurement of pulmonary microvascular distensibility.
    Hillier SC; Godbey PS; Hanger CC; Graham JA; Presson RG; Okada O; Linehan JH; Dawson CA; Wagner WW
    J Appl Physiol (1985); 1993 Nov; 75(5):2106-11. PubMed ID: 8307866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension.
    Pries AR; Secomb TW; Gaehtgens P
    Hypertension; 1999 Jan; 33(1):153-61. PubMed ID: 9931096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: application to pressure and flow transients.
    Schmid-Schönbein GW; Lee SY; Sutton D
    Biorheology; 1989; 26(2):215-27. PubMed ID: 2605329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of diameter variability along a microvessel segment on pressure drop.
    Kiani MF; Cokelet GR; Sarelius IH
    Microvasc Res; 1993 May; 45(3):219-32. PubMed ID: 8321139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Vascular Distensibility During Exercise Is an Early Hemodynamic Marker of Pulmonary Vascular Disease.
    Lau EMT; Chemla D; Godinas L; Zhu K; Sitbon O; Savale L; Montani D; Jaïs X; Celermajer DS; Simonneau G; Humbert M; Hervé P
    Chest; 2016 Feb; 149(2):353-361. PubMed ID: 26134583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hemodynamic model representation of the dog lung.
    Haworth ST; Linehan JH; Bronikowski TA; Dawson CA
    J Appl Physiol (1985); 1991 Jan; 70(1):15-26. PubMed ID: 2010370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational method for calculating distensibility of the blood vessel in vivo.
    Tewari KP; Mishra RK
    Physiol Chem Phys; 1975; 7(2):95-113. PubMed ID: 1153527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Björn Folkow Award lecture. The role of cardiac output in the control of blood pressure.
    Conway J
    J Hypertens Suppl; 1989 Dec; 7(6):S3-7. PubMed ID: 2698942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary and bronchial circulatory responses to segmental lung injury.
    Lakshminarayan S; Bernard S; Polissar NL; Glenny RW
    J Appl Physiol (1985); 1999 Nov; 87(5):1931-6. PubMed ID: 10562639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a right ventricular continuous flow pump to validate the distensible model of the pulmonary vasculature.
    Vanden Eynden F; Segers P; Bové T; De Somer F; El Oumeiri B; Van Nooten G
    Physiol Res; 2019 Apr; 68(2):233-243. PubMed ID: 30628823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of retinal circulation using an image-based network model of retinal vasculature.
    Ganesan P; He S; Xu H
    Microvasc Res; 2010 Jul; 80(1):99-109. PubMed ID: 20156460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distensibility of the normal human lung circulation during exercise.
    Reeves JT; Linehan JH; Stenmark KR
    Am J Physiol Lung Cell Mol Physiol; 2005 Mar; 288(3):L419-25. PubMed ID: 15695542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of cerebral circulation to brain arteriovenous malformations increases feeding artery pressure and decreases regional hypotension.
    Quick CM; Leonard EF; Young WL
    Neurosurgery; 2002 Jan; 50(1):167-73; discussion 173-5. PubMed ID: 11844247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulmonary pressures at high flows in the intact pulsatile flow perfused lung.
    McLean RF; Noble WH; Kolton M
    Can J Anaesth; 1992 Apr; 39(4):381-6. PubMed ID: 1563062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.