BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12560839)

  • 41. Bacterial genomics and vaccine design.
    Sampson SL; Rengarajan J; Rubin EJ
    Expert Rev Vaccines; 2003 Jun; 2(3):437-45. PubMed ID: 12903808
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases.
    Morales G; Ugidos A; Rojo F
    Environ Microbiol; 2006 Oct; 8(10):1764-74. PubMed ID: 16958757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida.
    Hishinuma S; Yuki M; Fujimura M; Fukumori F
    Environ Microbiol; 2006 Dec; 8(12):2115-24. PubMed ID: 17107553
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes.
    Velázquez F; de Lorenzo V; Valls M
    Environ Microbiol; 2006 Apr; 8(4):591-602. PubMed ID: 16584471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution of function in the crotonase superfamily: (3S)-methylglutaconyl-CoA hydratase from Pseudomonas putida.
    Wong BJ; Gerlt JA
    Biochemistry; 2004 Apr; 43(16):4646-54. PubMed ID: 15096032
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources.
    van der Werf MJ; Overkamp KM; Muilwijk B; Koek MM; van der Werff-van der Vat BJ; Jellema RH; Coulier L; Hankemeier T
    Mol Biosyst; 2008 Apr; 4(4):315-27. PubMed ID: 18354785
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.
    Raiger-Iustman LJ; Ruiz JA
    FEMS Microbiol Lett; 2008 Jul; 284(2):218-24. PubMed ID: 18498401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73.
    Xiao Y; Wu JF; Liu H; Wang SJ; Liu SJ; Zhou NY
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):166-71. PubMed ID: 16642329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial degradation of N,N-diethyl-m-toluamide (DEET): cloning and heterologous expression of DEET hydrolase.
    Rivera-Cancel G; Bocioaga D; Hay AG
    Appl Environ Microbiol; 2007 May; 73(9):3105-8. PubMed ID: 17337538
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11.
    Caballero A; Lázaro JJ; Ramos JL; Esteve-Núñez A
    Environ Microbiol; 2005 Aug; 7(8):1211-9. PubMed ID: 16011758
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442.
    Liu W; Chen GQ
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1153-9. PubMed ID: 17668200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disruption of quinoprotein ethanol dehydrogenase gene and adjacent genes in Pseudomonas putida HK5.
    Promden W; Vangnai AS; Pongsawasdi P; Adachi O; Matsushita K; Toyama H
    FEMS Microbiol Lett; 2008 Mar; 280(2):203-9. PubMed ID: 18218017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U.
    Arias S; Olivera ER; Arcos M; Naharro G; Luengo JM
    Environ Microbiol; 2008 Feb; 10(2):413-32. PubMed ID: 18177365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identical resolvases are encoded by Pseudomonas TOL plasmids pWW53 and pDK1.
    Assinder SJ; de Marco P; Sayers JR; Shaw LE; Winson MK; Williams PA
    Nucleic Acids Res; 1992 Oct; 20(20):5476. PubMed ID: 1331988
    [No Abstract]   [Full Text] [Related]  

  • 55. The Pseudomonas putida HskA hybrid sensor kinase controls the composition of the electron transport chain.
    Sevilla E; Silva-Jiménez H; Duque E; Krell T; Rojo F
    Environ Microbiol Rep; 2013 Apr; 5(2):291-300. PubMed ID: 23584971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genomic analysis of the role of RNase R in the turnover of Pseudomonas putida mRNAs.
    Fonseca P; Moreno R; Rojo F
    J Bacteriol; 2008 Sep; 190(18):6258-63. PubMed ID: 18641145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The genomes of Pseudomonas encode a third HU protein.
    Cases I; de Lorenzo V
    Microbiology (Reading); 2002 May; 148(Pt 5):1243-1245. PubMed ID: 11988498
    [No Abstract]   [Full Text] [Related]  

  • 58. The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products.
    Alaminos M; Ramos JL
    Arch Microbiol; 2001 Jul; 176(1-2):151-4. PubMed ID: 11479715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcriptome analysis of Pseudomonas putida in response to nitrogen availability.
    Hervás AB; Canosa I; Santero E
    J Bacteriol; 2008 Jan; 190(1):416-20. PubMed ID: 17965157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI.
    Volkers RJ; Snoek LB; Ruijssenaars HJ; de Winde JH
    PLoS One; 2015; 10(7):e0132416. PubMed ID: 26181384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.