These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 125616)

  • 1. Mathematical analysis of multienzyme systems. II. Steady state and transient control.
    Heinrich R; Rapoport TA
    Biosystems; 1975 Jul; 7(1):130-6. PubMed ID: 125616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical analysis of multienzyme systems. I. Modelling of the glycolysis of human erythrocytes.
    Rapoport TA; Heinrich R
    Biosystems; 1975 Jul; 7(1):120-9. PubMed ID: 168932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extended model of the glycolysis in erythrocytes.
    Rapoport TA; Otto M; Heinrich R
    Acta Biol Med Ger; 1977; 36(3-4):461-8. PubMed ID: 145774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes.
    Rapoport TA; Heinrich R; Rapoport SM
    Biochem J; 1976 Feb; 154(2):449-69. PubMed ID: 132930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of the hexokinase-phosphofructokinase system on the basis of an extended PFK-model.
    Otto M; Jacobasch G; Svetina S
    Acta Biol Med Ger; 1977; 36(3-4):581-5. PubMed ID: 145776
    [No Abstract]   [Full Text] [Related]  

  • 6. [Control of glycolysis in magnesium deficiency: studies on intact red cells and hemolysates].
    Jacobasch G; Gerth C; Fabricius PG
    Acta Biol Med Ger; 1977; 36(3-4):587-96. PubMed ID: 145777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity of the rate-limiting glycolytic enzymes in the erythrocyte with relation to time after death.
    Tsunenari S; Lythgoe AS; Gee DJ
    J Forensic Sci Soc; 1981 Oct; 21(4):333-6. PubMed ID: 6458662
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of Na+ and K+ on glycolytic enzymes: differential response of pyruvate kinase from dog and human erythrocytes.
    Bashan N; Moses S; Gross Y; Livine A
    FEBS Lett; 1975 Jul; 54(3):323-6. PubMed ID: 124266
    [No Abstract]   [Full Text] [Related]  

  • 9. [Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kholodenko BN; Erlikh LI
    Biofizika; 1977; 22(3):483-8. PubMed ID: 142521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Attempt at a mathematical description of the effect of ATP and F6P on the HK-PFK system in erythrocytes at pH 8.4].
    Hansen G; Schott J; Jacobasch G; Rapoport S
    Acta Biol Med Ger; 1970; 24(3):253-62. PubMed ID: 4251876
    [No Abstract]   [Full Text] [Related]  

  • 11. A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes.
    Rapoport TA; Heinrich R; Jacobasch G; Rapoport S
    Eur J Biochem; 1974 Feb; 42(1):107-20. PubMed ID: 4364392
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of type I (insulin-dependent) diabetes mellitus on key glycolytic enzymes of red blood cells.
    Suhail M; Rizvi S
    Acta Diabetol Lat; 1989; 26(4):315-20. PubMed ID: 2534257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red cell glycolysis in the myodystrophic child.
    Bosia A; Pescarmona GP; Arese P
    Eur J Clin Invest; 1971 Sep; 1(6):413-20. PubMed ID: 4256363
    [No Abstract]   [Full Text] [Related]  

  • 14. [Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Kholodenko BN
    Biofizika; 1979; 24(6):1048-53. PubMed ID: 159725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Control intensity of glycolytic enzymes in ultrasonic hemolysates of erythrocytes].
    Reimann B; Küttner G; Maretzki D; Rapoport S
    Acta Biol Med Ger; 1975; 34(11-12):1777-85. PubMed ID: 135459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters].
    Kholodenko BN; Dibrov BF; Zhabotinskiĭ AM
    Biofizika; 1981; 26(3):501-6. PubMed ID: 6455164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of pathway rate to activities of substrate-cycle enzymes: application to gluconeogenesis and glycolysis.
    Regen DM; Pilkis SJ
    J Theor Biol; 1984 Dec; 111(4):635-58. PubMed ID: 6241274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved extraction and determination of some glycolytic enzymes in the human erythrocyte.
    Pescarmona GP; Bosia A; Arese P
    Experientia; 1970; 26(7):719-20. PubMed ID: 4246975
    [No Abstract]   [Full Text] [Related]  

  • 19. Hormonal response of glycolytic key enzymes of erythrocytes in insulinoma.
    Kimura H; Horiuchi N; Kitamura T; Morita K
    Metabolism; 1971 Dec; 20(12):1119-21. PubMed ID: 4331546
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of pH-induced changes of the glycolysis of human erythrocytes.
    Rapoport I; Rapoport TA; Rapoport SM
    Acta Biol Med Ger; 1978; 37(3):393-401. PubMed ID: 32713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.