BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12562183)

  • 1. Electronic structure contributions to electron-transfer reactivity in iron-sulfur active sites: 3. Kinetics of electron transfer.
    Kennepohl P; Solomon EI
    Inorg Chem; 2003 Feb; 42(3):696-708. PubMed ID: 12562183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure contributions to electron-transfer reactivity in iron-sulfur active sites: 1. Photoelectron spectroscopic determination of electronic relaxation.
    Kennepohl P; Solomon EI
    Inorg Chem; 2003 Feb; 42(3):679-88. PubMed ID: 12562181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure contributions to electron-transfer reactivity in iron-sulfur active sites: 2. Reduction potentials.
    Kennepohl P; Solomon EI
    Inorg Chem; 2003 Feb; 42(3):689-95. PubMed ID: 12562182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution.
    Chen CJ; Lin YH; Huang YC; Liu MY
    Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure.
    Basumallick L; Sarangi R; DeBeer George S; Elmore B; Hooper AB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2005 Mar; 127(10):3531-44. PubMed ID: 15755175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein.
    Blumberger J; Klein ML
    J Am Chem Soc; 2006 Oct; 128(42):13854-67. PubMed ID: 17044714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of rubredoxin reveals the molecular basis of its electron transfer properties.
    Kümmerle R; Zhuang-Jackson H; Gaillard J; Moulis JM
    Biochemistry; 1997 Dec; 36(50):15983-91. PubMed ID: 9398333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand K-edge X-ray absorption spectroscopy and DFT calculations on [Fe3S4]0,+ clusters: delocalization, redox, and effect of the protein environment.
    Dey A; Glaser T; Moura JJ; Holm RH; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2004 Dec; 126(51):16868-78. PubMed ID: 15612726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the reduced high-potential iron-sulfur protein from chromatium vinosum and relevant model compounds: a unified picture of the electronic structure of [Fe(4)S(4)](2+) systems through magnetic and optical studies.
    Lawson Daku LM; Pécaut J; Lenormand-Foucaut A; Vieux-Melchior B; Iveson P; Jordanov J
    Inorg Chem; 2003 Oct; 42(21):6824-50. PubMed ID: 14552635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.
    Rosokha SV; Kochi JK
    Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxomolybdenum tetrathiolates with sterically encumbering ligands: modeling the effect of a protein matrix on electronic structure and reduction potentials.
    McNaughton RL; Mondal S; Nemykin VN; Basu P; Kirk ML
    Inorg Chem; 2005 Nov; 44(23):8216-22. PubMed ID: 16270958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-thiolate bonds in bioinorganic chemistry.
    Solomon EI; Gorelsky SI; Dey A
    J Comput Chem; 2006 Sep; 27(12):1415-28. PubMed ID: 16807974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-site structure and electron-transfer reactivity of plastocyanins.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2003 Feb; 125(8):2101-12. PubMed ID: 12590538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase.
    Jackson TA; Yikilmaz E; Miller AF; Brunold TC
    J Am Chem Soc; 2003 Jul; 125(27):8348-63. PubMed ID: 12837107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase.
    Lehnert N; Solomon EI
    J Biol Inorg Chem; 2003 Feb; 8(3):294-305. PubMed ID: 12589565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure, bonding, spectroscopy and energetics of Fe-dependent nitrile hydratase active-site models.
    Greene SN; Richards NG
    Inorg Chem; 2006 Jan; 45(1):17-36. PubMed ID: 16390037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of the latent precursor complex in electron-transfer dynamics. Intermolecular association and self-exchange with acceptor anion radicals.
    Ganesan V; Rosokha SV; Kochi JK
    J Am Chem Soc; 2003 Mar; 125(9):2559-71. PubMed ID: 12603144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.