These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12562508)

  • 1. Inhibition of NADH oxidation by chloramphenicol in the freely moving rat measured by picosecond time-resolved emission spectroscopy.
    Mottin S; Laporte P; Cespuglio R
    J Neurochem; 2003 Feb; 84(4):633-42. PubMed ID: 12562508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of NADH in the rat brain during sleep-wake states with an optic fibre sensor and time-resolved fluorescence procedures.
    Mottin S; Laporte P; Jouvet M; Cespuglio R
    Neuroscience; 1997 Aug; 79(3):683-93. PubMed ID: 9219933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical detection of mitochondrial NADH content in intact human myotubes.
    Gschwend MH; Rüdel R; Strauss WS; Sailer R; Brinkmeier H; Schneckenburger H
    Cell Mol Biol (Noisy-le-grand); 2001; 47 Online Pub():OL95-104. PubMed ID: 11936880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase by oxacarbocyanine dyes. A structure-activity study.
    Anderson WM; Wood JM; Anderson AC
    Biochem Pharmacol; 1993 May; 45(10):2115-22. PubMed ID: 8512593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of NADH in frozen rat brain sections by laser-induced fluorescence.
    Rex A; Pfeifer L; Fink H
    Biol Chem; 2001 Dec; 382(12):1727-32. PubMed ID: 11843186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chloramphenicol on brain energy metabolism using 31P spectroscopy: influences on sleep-wake states in rat.
    Chahboune H; Mahdjoub R; Desgoutte P; Rousset C; Briguet A; Cespuglio R
    J Neurochem; 2008 Aug; 106(4):1552-62. PubMed ID: 18507739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH measurements in adult rat myocytes during simulated ischemia.
    Esumi K; Nishida M; Shaw D; Smith TW; Marsh JD
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1743-52. PubMed ID: 2058713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans.
    Kotlyar AB; Borovok N
    Eur J Biochem; 2002 Aug; 269(16):4020-4. PubMed ID: 12180978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the proton-translocating NADH:ubiquinone oxidoreductases of mitochondria and Escherichia coli using the inhibitor 1,10-phenanthroline.
    Finel M; Majander A
    FEBS Lett; 1994 Feb; 339(1-2):142-6. PubMed ID: 8313963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ.
    Wakita M; Nishimura G; Tamura M
    J Biochem; 1995 Dec; 118(6):1151-60. PubMed ID: 8720129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloramphenicol decreases brain glucose utilization and modifies the sleep-wake cycle architecture in rats.
    Moulin-Sallanon M; Millet P; Rousset C; Zimmer L; Debilly G; Petit JM; Cespuglio R; Magistretti P; Ibáñez V
    J Neurochem; 2005 Jun; 93(6):1623-32. PubMed ID: 15935079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antianginal agent ranolazine is a weak inhibitor of the respiratory complex I, but with greater potency in broken or uncoupled than in coupled mitochondria.
    Wyatt KM; Skene C; Veitch K; Hue L; McCormack JG
    Biochem Pharmacol; 1995 Nov; 50(10):1599-606. PubMed ID: 7503762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae.
    Velázquez I; Pardo JP
    Arch Biochem Biophys; 2001 May; 389(1):7-14. PubMed ID: 11370674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.