These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 12562801)
41. Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. Forchhammer K FEMS Microbiol Rev; 2004 Jun; 28(3):319-33. PubMed ID: 15449606 [TBL] [Abstract][Full Text] [Related]
42. Cysteine-scanning analysis of the dimerization domain of EnvZ, an osmosensing histidine kinase. Qin L; Cai S; Zhu Y; Inouye M J Bacteriol; 2003 Jun; 185(11):3429-35. PubMed ID: 12754242 [TBL] [Abstract][Full Text] [Related]
43. Heterotrimerization of PII-like signalling proteins: implications for PII-mediated signal transduction systems. Forchhammer K; Hedler A; Strobel H; Weiss V Mol Microbiol; 1999 Jul; 33(2):338-49. PubMed ID: 10411750 [TBL] [Abstract][Full Text] [Related]
44. Functional dissection of the transmitter module of the histidine kinase NtrB in Escherichia coli. Kramer G; Weiss V Proc Natl Acad Sci U S A; 1999 Jan; 96(2):604-9. PubMed ID: 9892680 [TBL] [Abstract][Full Text] [Related]
45. Ligand binding to the receptor domain regulates the ratio of kinase to phosphatase activities of the signaling domain of the hybrid Escherichia coli transmembrane receptor, Taz1. Jin T; Inouye M J Mol Biol; 1993 Jul; 232(2):484-92. PubMed ID: 8393937 [TBL] [Abstract][Full Text] [Related]
46. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. Feng J; Atkinson MR; McCleary W; Stock JB; Wanner BL; Ninfa AJ J Bacteriol; 1992 Oct; 174(19):6061-70. PubMed ID: 1356964 [TBL] [Abstract][Full Text] [Related]
47. The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins. Shi L; Bischoff KM; Kennelly PJ J Bacteriol; 1999 Aug; 181(16):4761-7. PubMed ID: 10438742 [TBL] [Abstract][Full Text] [Related]
48. Mathematical model of the binding of allosteric effectors to the Escherichia coli PII signal transduction protein GlnB. da Rocha RA; Weschenfelder TA; de Castilhos F; de Souza EM; Huergo LF; Mitchell DA Biochemistry; 2013 Apr; 52(15):2683-93. PubMed ID: 23517273 [TBL] [Abstract][Full Text] [Related]
49. The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Jiang P; Peliska JA; Ninfa AJ Biochemistry; 1998 Sep; 37(37):12802-10. PubMed ID: 9737857 [TBL] [Abstract][Full Text] [Related]
50. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Keener J; Kustu S Proc Natl Acad Sci U S A; 1988 Jul; 85(14):4976-80. PubMed ID: 2839825 [TBL] [Abstract][Full Text] [Related]
51. Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. Baumgartner JW; Kim C; Brissette RE; Inouye M; Park C; Hazelbauer GL J Bacteriol; 1994 Feb; 176(4):1157-63. PubMed ID: 8106326 [TBL] [Abstract][Full Text] [Related]
52. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. Li W; Lu CD J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289 [TBL] [Abstract][Full Text] [Related]
53. Herbaspirillum seropedicae signal transduction protein PII is structurally similar to the enteric GlnK. Machado Benelli E; Buck M; Polikarpov I; Maltempi de Souza E; Cruz LM; Pedrosa FO Eur J Biochem; 2002 Jul; 269(13):3296-303. PubMed ID: 12084071 [TBL] [Abstract][Full Text] [Related]
54. The critical role of the conserved Thr247 residue in the functioning of the osmosensor EnvZ, a histidine Kinase/Phosphatase, in Escherichia coli. Dutta R; Yoshida T; Inouye M J Biol Chem; 2000 Dec; 275(49):38645-53. PubMed ID: 10973966 [TBL] [Abstract][Full Text] [Related]
55. Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation. Blauwkamp TA; Ninfa AJ Mol Microbiol; 2002 Oct; 46(1):203-14. PubMed ID: 12366843 [TBL] [Abstract][Full Text] [Related]
56. Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Jiang P; Ninfa AJ Biochemistry; 2007 Nov; 46(45):12979-96. PubMed ID: 17939683 [TBL] [Abstract][Full Text] [Related]
57. Requirement of both kinase and phosphatase activities of an Escherichia coli receptor (Taz1) for ligand-dependent signal transduction. Yang Y; Inouye M J Mol Biol; 1993 May; 231(2):335-42. PubMed ID: 8389884 [TBL] [Abstract][Full Text] [Related]
58. Purification of nitrogen regulator II, the product of the glnL (ntrB) gene of Escherichia coli. Ninfa AJ; Ueno-Nishio S; Hunt TP; Robustell B; Magasanik B J Bacteriol; 1986 Nov; 168(2):1002-4. PubMed ID: 3536843 [TBL] [Abstract][Full Text] [Related]
59. The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Hesketh A; Fink D; Gust B; Rexer HU; Scheel B; Chater K; Wohlleben W; Engels A Mol Microbiol; 2002 Oct; 46(2):319-30. PubMed ID: 12406211 [TBL] [Abstract][Full Text] [Related]
60. GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. Xu Y; Cheah E; Carr PD; van Heeswijk WC; Westerhoff HV; Vasudevan SG; Ollis DL J Mol Biol; 1998 Sep; 282(1):149-65. PubMed ID: 9733647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]