These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12562848)

  • 1. New perspectives on the regulation of intermembrane glycerophospholipid traffic.
    Voelker DR
    J Lipid Res; 2003 Mar; 44(3):441-9. PubMed ID: 12562848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein and lipid motifs regulate phosphatidylserine traffic in yeast.
    Voelker DR
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1141-5. PubMed ID: 16246067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of different biosynthetic pathways to species selectivity of aminoglycerophospholipids assembled into mitochondrial membranes of the yeast Saccharomyces cerevisiae.
    Bürgermeister M; Birner-Grünberger R; Heyn M; Daum G
    Biochim Biophys Acta; 2004 Nov; 1686(1-2):148-60. PubMed ID: 15522831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular assemblies regulate nonvesicular phosphatidylserine traffic in yeast.
    Choi JY; Riekhof WR; Wu WI; Voelker DR
    Biochem Soc Trans; 2006 Jun; 34(Pt 3):404-8. PubMed ID: 16709173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interorganelle transport of aminoglycerophospholipids.
    Voelker DR
    Biochim Biophys Acta; 2000 Jun; 1486(1):97-107. PubMed ID: 10856716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of phosphatidylserine transport to the locus of phosphatidylserine decarboxylase 2 in permeabilized yeast.
    Wu WI; Voelker DR
    J Biol Chem; 2001 Mar; 276(10):7114-21. PubMed ID: 11104779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of phosphatidylserine transport from chemically defined donor membranes to phosphatidylserine decarboxylase 2 implicates specific lipid domains in the process.
    Wu WI; Voelker DR
    J Biol Chem; 2004 Feb; 279(8):6635-42. PubMed ID: 14660568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylserine transport to the mitochondria is regulated by ubiquitination.
    Schumacher MM; Choi JY; Voelker DR
    J Biol Chem; 2002 Dec; 277(52):51033-42. PubMed ID: 12393893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assembly of proteins and lipid domains regulates transport of phosphatidylserine to phosphatidylserine decarboxylase 2 in Saccharomyces cerevisiae.
    Riekhof WR; Wu WI; Jones JL; Nikrad M; Chan MM; Loewen CJ; Voelker DR
    J Biol Chem; 2014 Feb; 289(9):5809-19. PubMed ID: 24366873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.
    Kannan M; Riekhof WR; Voelker DR
    Traffic; 2015 Feb; 16(2):123-34. PubMed ID: 25355612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae.
    Bürgermeister M; Birner-Grünberger R; Nebauer R; Daum G
    Biochim Biophys Acta; 2004 Nov; 1686(1-2):161-8. PubMed ID: 15522832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of intracellular aminoglycerophospholipid traffic.
    Voelker DR
    Biochem Cell Biol; 2004 Feb; 82(1):156-69. PubMed ID: 15052335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution.
    Padilla-López S; Langager D; Chan CH; Pearce DA
    Dis Model Mech; 2012 Mar; 5(2):191-9. PubMed ID: 22107873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthetic regulation and intracellular transport of phosphatidylserine in mammalian cells.
    Kuge O; Nishijima M
    J Biochem; 2003 Apr; 133(4):397-403. PubMed ID: 12761285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mitochondrial membrane protein is required for translocation of phosphatidylserine from mitochondria-associated membranes to mitochondria.
    Shiao YJ; Balcerzak B; Vance JE
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):217-23. PubMed ID: 9512482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new gene involved in the transport-dependent metabolism of phosphatidylserine, PSTB2/PDR17, shares sequence similarity with the gene encoding the phosphatidylinositol/phosphatidylcholine transfer protein, SEC14.
    Wu WI; Routt S; Bankaitis VA; Voelker DR
    J Biol Chem; 2000 May; 275(19):14446-56. PubMed ID: 10799527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenesis and cellular dynamics of aminoglycerophospholipids.
    Birner R; Daum G
    Int Rev Cytol; 2003; 225():273-323. PubMed ID: 12696595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemistry and genetics of interorganelle aminoglycerophospholipid transport.
    Wu WI; Voelker DR
    Semin Cell Dev Biol; 2002 Jun; 13(3):185-95. PubMed ID: 12137739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminoglycerophospholipid flipping and P4-ATPases in Toxoplasma gondii.
    Chen K; Günay-Esiyok Ö; Klingeberg M; Marquardt S; Pomorski TG; Gupta N
    J Biol Chem; 2021; 296():100315. PubMed ID: 33485966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum.
    Vance JE
    J Biol Chem; 1991 Jan; 266(1):89-97. PubMed ID: 1898727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.