These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice. Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823 [TBL] [Abstract][Full Text] [Related]
3. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice. Dahlstedt AJ; Katz A; Westerblad H J Physiol; 2001 Jun; 533(Pt 2):379-88. PubMed ID: 11389199 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178 [TBL] [Abstract][Full Text] [Related]
5. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions. Gorselink M; Drost MR; van der Vusse GJ Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654 [TBL] [Abstract][Full Text] [Related]
6. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels. Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858 [TBL] [Abstract][Full Text] [Related]
7. Regulation of myoplasmic Ca(2+) in genetically obese (ob/ob) mouse single skeletal muscle fibres. Bruton JD; Katz A; Lännergren J; Abbate F; Westerblad H Pflugers Arch; 2002 Sep; 444(6):692-9. PubMed ID: 12355168 [TBL] [Abstract][Full Text] [Related]
8. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres. Lipska E; Novotova M; Radzyukevich T; Zahradnik I Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154 [TBL] [Abstract][Full Text] [Related]
9. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres. Lipská E; Radzyukevich T Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289 [TBL] [Abstract][Full Text] [Related]
10. The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle. Allen DG; Lännergren J; Westerblad H J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):587-600. PubMed ID: 9051572 [TBL] [Abstract][Full Text] [Related]
11. Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase. Dahlstedt AJ; Katz A; Wieringa B; Westerblad H FASEB J; 2000 May; 14(7):982-90. PubMed ID: 10783153 [TBL] [Abstract][Full Text] [Related]
12. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro. Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189 [TBL] [Abstract][Full Text] [Related]
13. Glycolysis supports calcium uptake by the sarcoplasmic reticulum in skinned ventricular fibres of mice deficient in mitochondrial and cytosolic creatine kinase. Boehm E; Ventura-Clapier R; Mateo P; Lechène P; Veksler V J Mol Cell Cardiol; 2000 Jun; 32(6):891-902. PubMed ID: 10888244 [TBL] [Abstract][Full Text] [Related]
14. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. Chin ER; Allen DG J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):831-40. PubMed ID: 9769425 [TBL] [Abstract][Full Text] [Related]
15. Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle. Westerblad H; Allen DG J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):31-43. PubMed ID: 7853224 [TBL] [Abstract][Full Text] [Related]
16. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects. Radzyukevich T; Lipská E; Pavelková J; Zacharová D Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694 [TBL] [Abstract][Full Text] [Related]
17. The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres. Chin ER; Allen DG J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):813-24. PubMed ID: 8815213 [TBL] [Abstract][Full Text] [Related]
18. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of creatine kinase reduces the rate of fatigue-induced decrease in tetanic [Ca(2+)](i) in mouse skeletal muscle. Dahlstedt AJ; Westerblad H J Physiol; 2001 Jun; 533(Pt 3):639-49. PubMed ID: 11410623 [TBL] [Abstract][Full Text] [Related]
20. Activation of Ca(2+)-dependent protein kinase II during repeated contractions in single muscle fibres from mouse is dependent on the frequency of sarcoplasmic reticulum Ca(2+) release. Aydin J; Korhonen T; Tavi P; Allen DG; Westerblad H; Bruton JD Acta Physiol (Oxf); 2007 Oct; 191(2):131-7. PubMed ID: 17565565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]