These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12562930)

  • 21. Isoform-selective effects of isoflurane on voltage-gated Na+ channels.
    OuYang W; Hemmings HC
    Anesthesiology; 2007 Jul; 107(1):91-8. PubMed ID: 17585220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sodium channel Na(V)1.5 expression is enhanced in cultured adult rat skeletal muscle fibers.
    Morel J; Rannou F; Talarmin H; Giroux-Metges MA; Pennec JP; Dorange G; Gueret G
    J Membr Biol; 2010 Jun; 235(2):109-19. PubMed ID: 20517693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isoform-specific lidocaine block of sodium channels explained by differences in gating.
    Nuss HB; Kambouris NG; Marbán E; Tomaselli GF; Balser JR
    Biophys J; 2000 Jan; 78(1):200-10. PubMed ID: 10620286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na+ current densities and voltage dependence in human intercostal muscle fibres.
    Ruff RL; Whittlesey D
    J Physiol; 1992 Dec; 458():85-97. PubMed ID: 1338797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na v1.4 and Na v1.5 are modulated differently during muscle immobilization and contractile phenotype conversion.
    Rannou F; Pennec JP; Morel J; Guéret G; Leschiera R; Droguet M; Gioux M; Giroux-Metges MA
    J Appl Physiol (1985); 2011 Aug; 111(2):495-507. PubMed ID: 21596924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partial recovery of skeletal muscle sodium channel properties in aged rats chronically treated with growth hormone or the GH-secretagogue hexarelin.
    Desaphy JF; De Luca A; Pierno S; Imbrici P; Camerino DC
    J Pharmacol Exp Ther; 1998 Aug; 286(2):903-12. PubMed ID: 9694949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered sodium channel-protein associations in critical illness myopathy.
    Kraner SD; Novak KR; Wang Q; Peng J; Rich MM
    Skelet Muscle; 2012 Aug; 2(1):17. PubMed ID: 22935229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor necrosis factor-α downregulates sodium current in skeletal muscle by protein kinase C activation: involvement in critical illness polyneuromyopathy.
    Guillouet M; Gueret G; Rannou F; Giroux-Metges MA; Gioux M; Arvieux CC; Pennec JP
    Am J Physiol Cell Physiol; 2011 Nov; 301(5):C1057-63. PubMed ID: 21795525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans.
    Bouhours M; Sternberg D; Davoine CS; Ferrer X; Willer JC; Fontaine B; Tabti N
    J Physiol; 2004 Feb; 554(Pt 3):635-47. PubMed ID: 14617673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle is electrically inexcitable in acute quadriplegic myopathy.
    Rich MM; Teener JW; Raps EC; Schotland DL; Bird SJ
    Neurology; 1996 Mar; 46(3):731-6. PubMed ID: 8618674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of channel cytoplasmic regions on the activation mechanisms of cardiac versus skeletal muscle Na(+) channels.
    Bennett ES
    Biophys J; 1999 Dec; 77(6):2999-3009. PubMed ID: 10585922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NA+- and K+-channels as molecular targets of the alkaloid ajmaline in skeletal muscle fibres.
    Friedrich O; V Wegner F; Wink M; Fink RH
    Br J Pharmacol; 2007 May; 151(1):82-93. PubMed ID: 17351660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis.
    Hayward LJ; Brown RH; Cannon SC
    Biophys J; 1997 Mar; 72(3):1204-19. PubMed ID: 9138567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biophysical properties of the silent and activated rat sympathetic neuron following denervation.
    Sacchi O; Rossi ML; Canella R; Fesce R
    Neuroscience; 2005; 135(1):31-45. PubMed ID: 16084656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extension and magnitude of denervation in skeletal muscle from ageing mice.
    Wang ZM; Zheng Z; Messi ML; Delbono O
    J Physiol; 2005 Jun; 565(Pt 3):757-64. PubMed ID: 15890702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of a preferential myosin loss on Ca2+ activation of force generation in single human skeletal muscle fibres.
    Ochala J; Larsson L
    Exp Physiol; 2008 Apr; 93(4):486-95. PubMed ID: 18245202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation of muscle fibre types and capillary network to acute denervation and shortlasting reinnervation.
    Cebasek V; Kubínová L; Janácek J; Ribaric S; Erzen I
    Cell Tissue Res; 2007 Nov; 330(2):279-89. PubMed ID: 17805577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels.
    O'Reilly JP; Wang SY; Wang GK
    Biophys J; 2001 Oct; 81(4):2100-11. PubMed ID: 11566781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myopathy in critically ill patients.
    Hund E
    Crit Care Med; 1999 Nov; 27(11):2544-7. PubMed ID: 10579278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.