These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Critical illness myopathy: a direct role for endotoxin. Young GB Crit Care Med; 2008 Apr; 36(4):1381-2. PubMed ID: 18379281 [No Abstract] [Full Text] [Related]
43. Role of ubiquitin-proteasome proteolysis in muscle fiber destruction in experimental chloroquine-induced myopathy. Kimura N; Kumamoto T; Oniki T; Nomura M; Nakamura K; Abe Y; Hazama Y; Ueyama H Muscle Nerve; 2009 Apr; 39(4):521-8. PubMed ID: 19296457 [TBL] [Abstract][Full Text] [Related]
44. Involvement of methionine residues in the fast inactivation mechanism of the sodium current from toad skeletal muscle fibers. Quiñonez M; DiFranco M; González F J Membr Biol; 1999 May; 169(2):83-90. PubMed ID: 10341030 [TBL] [Abstract][Full Text] [Related]
45. Different ability of clenbuterol and salbutamol to block sodium channels predicts their therapeutic use in muscle excitability disorders. Desaphy JF; Pierno S; De Luca A; Didonna P; Camerino DC Mol Pharmacol; 2003 Mar; 63(3):659-70. PubMed ID: 12606775 [TBL] [Abstract][Full Text] [Related]
46. Voltage-gated potassium conductances in Gymnotus electrocytes(AB). Sierra F; Comas V; Buño W; Macadar O Neuroscience; 2007 Mar; 145(2):453-63. PubMed ID: 17222982 [TBL] [Abstract][Full Text] [Related]
47. Changes of the biophysical properties of calcium-activated potassium channels of rat skeletal muscle fibres during aging. Tricarico D; Petruzzi R; Camerino DC Pflugers Arch; 1997 Nov; 434(6):822-9. PubMed ID: 9306018 [TBL] [Abstract][Full Text] [Related]
48. The role of endotoxin in critical illness myopathy and polyneuropathy. Ahrens J; Leuwer M; Foadi N; Haeseler G J Neurol; 2009 Aug; 256(8):1354. PubMed ID: 19306036 [No Abstract] [Full Text] [Related]
50. Role of Ca(2+) in injury-induced changes in sodium current in rat skeletal muscle. Filatov GN; Pinter MJ; Rich MM Am J Physiol Cell Physiol; 2009 Aug; 297(2):C352-9. PubMed ID: 19494240 [TBL] [Abstract][Full Text] [Related]
51. Enhanced muscle shortening and impaired Ca2+ channel function in an acute septic myopathy model. Friedrich O; Hund E; von Wegner F J Neurol; 2010 Apr; 257(4):546-55. PubMed ID: 19888622 [TBL] [Abstract][Full Text] [Related]
52. Fast and slow twitch skeletal muscle fibres differ in their distribution of Na channels near the endplate. Milton RL; Lupa MT; Caldwell JH Neurosci Lett; 1992 Jan; 135(1):41-4. PubMed ID: 1311822 [TBL] [Abstract][Full Text] [Related]
53. Effects of dantrolene sodium on fibrillation potentials in denervated rat muscles. Izumi SI; Tsubahara A; Chino N; Mineo K Muscle Nerve; 1998 Dec; 21(12):1797-9. PubMed ID: 9843088 [TBL] [Abstract][Full Text] [Related]
54. Vamorolone treatment improves skeletal muscle outcome in a critical illness myopathy rat model. Akkad H; Cacciani N; Llano-Diez M; Corpeno Kalamgi R; Tchkonia T; Kirkland JL; Larsson L Acta Physiol (Oxf); 2019 Feb; 225(2):e13172. PubMed ID: 30120816 [TBL] [Abstract][Full Text] [Related]
55. Sodium channel mRNAs at the neuromuscular junction: distinct patterns of accumulation and effects of muscle activity. Awad SS; Lightowlers RN; Young C; Chrzanowska-Lightowlers ZM; Lomo T; Slater CR J Neurosci; 2001 Nov; 21(21):8456-63. PubMed ID: 11606634 [TBL] [Abstract][Full Text] [Related]
56. Electrical properties of normal, denervated and organ-cultured slow fibres of toad cruralis muscles. Szczupak L; Siri LN; Mezio A; Uchitel OD Pflugers Arch; 1989 Sep; 414(5):584-8. PubMed ID: 2506520 [TBL] [Abstract][Full Text] [Related]
57. A comparative study of membrane properties of innervated and chronically denervated fast and slow skeletal muscles of the rat. Albuquerque EX; Thesleff S Acta Physiol Scand; 1968 Aug; 73(4):471-80. PubMed ID: 5708174 [No Abstract] [Full Text] [Related]
59. Loss and recovery of excitability by normal and by degenerating nerves deprived of sodium. GALLEGO A J Gen Physiol; 1951 Sep; 35(1):129-44. PubMed ID: 14873925 [TBL] [Abstract][Full Text] [Related]