These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 12563016)

  • 21. Dynamics of corticospinal motor control during overground and treadmill walking in humans.
    Roeder L; Boonstra TW; Smith SS; Kerr GK
    J Neurophysiol; 2018 Sep; 120(3):1017-1031. PubMed ID: 29847229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence.
    Riddle CN; Baker SN
    Neuroimage; 2006 Nov; 33(2):618-27. PubMed ID: 16963283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electroencephalographic measurement of motor cortex control of muscle activity in humans.
    Mima T; Steger J; Schulman AE; Gerloff C; Hallett M
    Clin Neurophysiol; 2000 Feb; 111(2):326-37. PubMed ID: 10680569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal dynamics of primary motor cortex γ oscillation amplitude and piper corticomuscular coherence changes during motor control.
    Muthukumaraswamy SD
    Exp Brain Res; 2011 Aug; 212(4):623-33. PubMed ID: 21701903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of synchrony and oscillations in the motor output.
    Baker SN; Kilner JM; Pinches EM; Lemon RN
    Exp Brain Res; 1999 Sep; 128(1-2):109-17. PubMed ID: 10473748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corticomuscular coherence in the 6-15 Hz band: is the cortex involved in the generation of physiologic tremor?
    Raethjen J; Lindemann M; Dümpelmann M; Wenzelburger R; Stolze H; Pfister G; Elger CE; Timmer J; Deuschl G
    Exp Brain Res; 2002 Jan; 142(1):32-40. PubMed ID: 11797082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.
    Ushiyama J; Takahashi Y; Ushiba J
    J Appl Physiol (1985); 2010 Oct; 109(4):1086-95. PubMed ID: 20689093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Pain Decreases Corticomuscular Coherence in a Force- But Not a Position-Control Task.
    Poortvliet PC; Tucker KJ; Finnigan S; Scott D; Hodges PW
    J Pain; 2019 Feb; 20(2):192-200. PubMed ID: 30266268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibitory interneuron circuits at cortical and spinal levels are associated with individual differences in corticomuscular coherence during isometric voluntary contraction.
    Matsuya R; Ushiyama J; Ushiba J
    Sci Rep; 2017 Mar; 7():44417. PubMed ID: 28290507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corticomuscular and bilateral EMG coherence reflect distinct aspects of neural synchronization.
    Boonstra TW; van Wijk BC; Praamstra P; Daffertshofer A
    Neurosci Lett; 2009 Sep; 463(1):17-21. PubMed ID: 19619608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonistic muscle prefatigue weakens the functional corticomuscular coupling during isometric elbow extension contraction.
    Wang L; Xie Z; Lu A; Lu T; Zhang S; Zheng F; Niu W
    Neuroreport; 2020 Mar; 31(5):372-380. PubMed ID: 31876688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials.
    Keil J; Timm J; Sanmiguel I; Schulz H; Obleser J; Schönwiesner M
    J Neurophysiol; 2014 Feb; 111(3):513-9. PubMed ID: 24198325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V; Naranjo JR; Schulte-Mönting J; Omlor W; Huethe F; Kristeva R
    J Neurophysiol; 2009 Aug; 102(2):1115-20. PubMed ID: 19458142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corticomuscular coherence with and without additional task in the elderly.
    Johnson AN; Shinohara M
    J Appl Physiol (1985); 2012 Mar; 112(6):970-81. PubMed ID: 22223451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle responses to transcranial stimulation in man depend on background oscillatory activity.
    Mitchell WK; Baker MR; Baker SN
    J Physiol; 2007 Sep; 583(Pt 2):567-79. PubMed ID: 17627997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions.
    Dal Maso F; Longcamp M; Cremoux S; Amarantini D
    Exp Brain Res; 2017 Oct; 235(10):3023-3031. PubMed ID: 28725924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical representation of different motor rhythms during bimanual movements.
    Muthuraman M; Arning K; Govindan RB; Heute U; Deuschl G; Raethjen J
    Exp Brain Res; 2012 Dec; 223(4):489-504. PubMed ID: 23007724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output.
    Baker SN; Pinches EM; Lemon RN
    J Neurophysiol; 2003 Apr; 89(4):1941-53. PubMed ID: 12686573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurophysiological, behavioural and perceptual differences between wrist flexion and extension related to sensorimotor monitoring as shown by corticomuscular coherence.
    Divekar NV; John LR
    Clin Neurophysiol; 2013 Jan; 124(1):136-47. PubMed ID: 22959414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.
    Siemionow V; Sahgal V; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):97-106. PubMed ID: 20371421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.