BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12564499)

  • 1. MRI feedback temperature control for focused ultrasound surgery.
    Vanne A; Hynynen K
    Phys Med Biol; 2003 Jan; 48(1):31-43. PubMed ID: 12564499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.
    Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R
    Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [MRI-guided surgery with high intensity focused ultrasound].
    Jenne JW; Rastert R; Rademaker G; Divkovic G; Debus J; Huber PE
    Z Med Phys; 2003; 13(3):193-7. PubMed ID: 14562543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-tuning adaptive controller for 3-D image-guided ultrasound cancer therapy.
    Goharrizi AY; Kwong RH; Chopra R
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):911-9. PubMed ID: 24557692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active MR-temperature feedback control of dynamic interstitial ultrasound therapy in brain: in vivo experiments and modeling in native and coagulated tissues.
    N'Djin WA; Burtnyk M; Lipsman N; Bronskill M; Kucharczyk W; Schwartz ML; Chopra R
    Med Phys; 2014 Sep; 41(9):093301. PubMed ID: 25186419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a new control strategy for 3D MRI-controlled interstitial ultrasound cancer therapy.
    Goharrizi AY; N'djin WA; Kwong R; Chopra R
    Med Phys; 2013 Mar; 40(3):033301. PubMed ID: 23464342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature change near microbubbles within a capillary network during focused ultrasound.
    Klotz AR; Lindvere L; Stefanovic B; Hynynen K
    Phys Med Biol; 2010 Mar; 55(6):1549-61. PubMed ID: 20164536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal dose optimization method for ultrasound surgery.
    Malinen M; Huttunen T; Kaipio JP
    Phys Med Biol; 2003 Mar; 48(6):745-62. PubMed ID: 12699192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation.
    Arora D; Cooley D; Perry T; Skliar M; Roemer RB
    Phys Med Biol; 2005 Apr; 50(8):1919-35. PubMed ID: 15815104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The feasibility of MRI feedback control for intracavitary phased array hyperthermia treatments.
    Hutchinson E; Dahleh M; Hynynen K
    Int J Hyperthermia; 1998; 14(1):39-56. PubMed ID: 9483445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh.
    Sokka SD; King R; Hynynen K
    Phys Med Biol; 2003 Jan; 48(2):223-41. PubMed ID: 12587906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of 3-D conformal MRI-guided transurethral ultrasound therapy of the prostate: theoretical simulations.
    Burtnyk M; Chopra R; Bronskill MJ
    Int J Hyperthermia; 2009 Mar; 25(2):116-31. PubMed ID: 19337912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic two-dimensional phantom for ultrasound hyperthermia controller testing.
    Payne A; Mattingly M; Shelkey J; Scott E; Roemer R
    Int J Hyperthermia; 2001; 17(2):143-59. PubMed ID: 11252358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental evaluation of a temperature controller for scanned focused ultrasound hyperthermia.
    Lin WL; Roemer RB; Hynynen K
    Med Phys; 1990; 17(4):615-25. PubMed ID: 2215406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.
    N'djin WA; Burtnyk M; Bronskill M; Chopra R
    Int J Hyperthermia; 2012; 28(1):87-104. PubMed ID: 22235788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.
    Hu J; Qian S; Ding Y
    Ultrasonics; 2010 May; 50(6):628-33. PubMed ID: 20156630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.
    Foiret J; Ferrara KW
    PLoS One; 2015; 10(8):e0134938. PubMed ID: 26244783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-element analysis of temperature rise and lesion formation from catheter ultrasound ablation transducers.
    Gentry KL; Palmeri ML; Sachedina N; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1713-21. PubMed ID: 16382622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating thermal effects of MR-guided focused ultrasound in cortical bone and its surrounding tissue.
    Hudson TJ; Looi T; Pichardo S; Amaral J; Temple M; Drake JM; Waspe AC
    Med Phys; 2018 Feb; 45(2):506-519. PubMed ID: 29193144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.