These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12564677)

  • 1. Practical implications of ionic strength effects on particle retention in thermal field-flow fractionation.
    Shiundu PM; Munguti SM; Ratanathanawongs Williams SK
    J Chromatogr A; 2003 Jan; 984(1):67-79. PubMed ID: 12564677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention behavior of metal particle dispersions in aqueous and nonaqueous carriers in thermal field-flow fractionation.
    Shiundu PM; Munguti SM; Ratanathanawongs Williams SK
    J Chromatogr A; 2003 Jan; 983(1-2):163-76. PubMed ID: 12568380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of channel width on the retention of colloidal particles in polarization, steric, and focusing micro-thermal field-flow fractionation.
    Janca J; Ananieva IA; Menshikova AY; Evseeva TG; Dupák J
    J Chromatogr A; 2004 Aug; 1046(1-2):167-73. PubMed ID: 15387186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit role of ionic strength in retention behavior of polystyrene latex particles in sedimentation field-flow fractionation: Slip boundary model.
    Rah K; Han S; Choi J; Eum CH; Lee S
    J Chromatogr A; 2017 Dec; 1528():75-82. PubMed ID: 29126589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation.
    Greyling G; Pasch H
    J Chromatogr A; 2017 Aug; 1512():115-123. PubMed ID: 28716356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology of measurement of ionic strength based on field-flow fractionation.
    Rah K; Choi J; Lee S
    J Chromatogr A; 2021 Nov; 1658():462591. PubMed ID: 34656839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the carrier composition on thermal field-flow fractionation for the characterisation of sub-micron polystyrene latex particles.
    Mes EP; Tijssen R; Kok WT
    J Chromatogr A; 2001 Jan; 907(1-2):201-9. PubMed ID: 11217026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnitude and direction of thermal diffusion of colloidal particles measured by thermal field-flow fractionation.
    Shiundu PM; Williams PS; Giddings JC
    J Colloid Interface Sci; 2003 Oct; 266(2):366-76. PubMed ID: 14527460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal field-flow fractionation of charged submicrometer particles in aqueous media.
    Pasti L; Agnolet S; Dondi F
    Anal Chem; 2007 Jul; 79(14):5284-96. PubMed ID: 17566978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-thermal focusing field-flow fractionation.
    Janca J; Ananieva IA; Menshikova AY; Evseeva TG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Feb; 800(1-2):33-40. PubMed ID: 14698233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional effects in the retention of colloids by thermal field-flow fractionation.
    Jeon SJ; Schimpf ME; Nyborg A
    Anal Chem; 1997 Sep; 69(17):3442-50. PubMed ID: 21639266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for effective field measurements in electrical field-flow fractionation.
    Merugu S; Sant HJ; Gale BK
    Electrophoresis; 2012 Mar; 33(6):1040-7. PubMed ID: 22528424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables.
    Hupfeld S; Ausbacher D; Brandl M
    J Sep Sci; 2009 May; 32(9):1465-70. PubMed ID: 19350580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of interaction forces by investigation of the influence of eluent additives on the retention behavior of aqueous nanoparticle dispersions in asymmetrical flow field-flow fractionation.
    Nickel C; Scherer C; Noskov S; Bantz C; Berger M; Schupp W; Maskos M
    J Chromatogr A; 2021 Jan; 1637():461840. PubMed ID: 33412293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation.
    Neubauer E; v d Kammer F; Hofmann T
    J Chromatogr A; 2011 Sep; 1218(38):6763-73. PubMed ID: 21855877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases.
    Greyling G; Pasch H
    J Chromatogr A; 2018 Jan; 1532():175-181. PubMed ID: 29223324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.
    Guo S; Qiu BL; Zhu CQ; Yang YG; Wu D; Liang QH; Han NY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1031():1-7. PubMed ID: 27447927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.
    Dou H; Bai G; Ding L; Li Y; Lee S
    J Chromatogr A; 2015 Nov; 1422():253-259. PubMed ID: 26493474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the particle-wall interaction energy in sedimentation field flow fractionation.
    Lioris N; Farmakis L; Koliadima A; Karaiskakis G
    J Chromatogr A; 2005 Sep; 1087(1-2):13-9. PubMed ID: 16130692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention behavior of microparticles in gravitational field-flow fractionation (GrFFF): effect of ionic strength.
    Woo IS; Jung EC; Lee S
    Talanta; 2015 Jan; 132():945-53. PubMed ID: 25476401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.