These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12564677)

  • 41. A theory-based approach to thermal field-flow fractionation of polyacrylates.
    Runyon JR; Williams SK
    J Chromatogr A; 2011 Sep; 1218(39):7016-22. PubMed ID: 21872869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the shape of various bacteria in their separation by Microthermal Field-Flow Fractionation.
    Janča J; Halabalová V; Růžička J
    J Chromatogr A; 2010 Dec; 1217(51):8062-71. PubMed ID: 21075379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the retention mechanisms and secondary effects in microthermal field-flow fractionation of particles.
    Janca J; Stejskal J
    J Chromatogr A; 2009 Dec; 1216(52):9071-80. PubMed ID: 19552912
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Semi-preparative asymmetrical flow field-flow fractionation: A closer look at channel dimensions and separation performance.
    Bria CRM; Skelly PW; Morse JR; Schaak RE; Williams SKR
    J Chromatogr A; 2017 May; 1499():149-157. PubMed ID: 28400065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shifts in polystyrene particle surface charge upon adsorption of the Pluronic F108 surfactant.
    Ter Veen R; Fromell K; Caldwell KD
    J Colloid Interface Sci; 2005 Aug; 288(1):124-8. PubMed ID: 15927570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of asymmetrical flow field-flow fractionation channel geometry on separation efficiency.
    Ahn JY; Kim KH; Lee JY; Williams PS; Moon MH
    J Chromatogr A; 2010 Jun; 1217(24):3876-80. PubMed ID: 20439106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of operating parameters on the retention of chromatographic particles by thermal field-flow fractionation.
    Regazzetti A; Hoyos M; Martin M
    Anal Chem; 2004 Oct; 76(19):5787-98. PubMed ID: 15456299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multidetector thermal field-flow fractionation as a novel tool for the microstructure separation of polyisoprene and polybutadiene.
    Greyling G; Pasch H
    Macromol Rapid Commun; 2014 Nov; 35(21):1846-51. PubMed ID: 25220541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elimination of edge effects in micro-thermal field-flow fractionation channel of low aspect ratio by splitting the carrier liquid flow into the main central stream and the thin stream layers at the side channel walls.
    Janca J; Dupák J
    J Chromatogr A; 2005 Mar; 1068(2):261-8. PubMed ID: 15830932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recovery, overloading, and protein interactions in asymmetrical flow field-flow fractionation.
    Marioli M; Kok WT
    Anal Bioanal Chem; 2019 Apr; 411(11):2327-2338. PubMed ID: 30790023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation.
    Schachermeyer S; Ashby J; Kwon M; Zhong W
    J Chromatogr A; 2012 Nov; 1264():72-9. PubMed ID: 23058938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of steric transition with field programming in frit inlet asymmetrical flow field-flow fractionation.
    Kim YB; Yang JS; Moon MH
    J Chromatogr A; 2018 Nov; 1576():131-136. PubMed ID: 30253911
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Composition and molecular weight analysis of styrene-acrylic copolymers using thermal field-flow fractionation.
    Runyon JR; Williams SK
    J Chromatogr A; 2011 Sep; 1218(38):6774-9. PubMed ID: 21855881
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
    Shendruk TN; Tahvildari R; Catafard NM; Andrzejewski L; Gigault C; Todd A; Gagne-Dumais L; Slater GW; Godin M
    Anal Chem; 2013 Jun; 85(12):5981-8. PubMed ID: 23650976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The shape effect on the retention behaviors of ellipsoidal particles in field-flow fractionation: Theoretical model derivation considering the steric-entropic mode.
    Monjezi S; Schneier M; Choi J; Lee S; Park J
    J Chromatogr A; 2019 Feb; 1587():189-196. PubMed ID: 30558845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane-particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles.
    Bendixen N; Losert S; Adlhart C; Lattuada M; Ulrich A
    J Chromatogr A; 2014 Mar; 1334():92-100. PubMed ID: 24556173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miniaturized asymmetrical flow field-flow fractionation: application to biological vesicles.
    Oh S; Kang D; Ahn SM; Simpson RJ; Lee BH; Moon MH
    J Sep Sci; 2007 May; 30(7):1082-7. PubMed ID: 17566344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.
    Makan AC; Spallek MJ; du Toit M; Klein T; Pasch H
    J Chromatogr A; 2016 Apr; 1442():94-106. PubMed ID: 26987415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A quantitative determination of magnetic nanoparticle separation using on-off field operation of quadrupole magnetic field-flow fractionation (QMgFFF).
    Orita T; Moore LR; Joshi P; Tomita M; Horiuchi T; Zborowski M
    Anal Sci; 2013; 29(7):761-4. PubMed ID: 23842422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-speed particle separation and steric inversion in thin flow field-flow fractionation channels.
    Jensen KD; Williams SK; Giddings JC
    J Chromatogr A; 1996 Oct; 746(1):137-45. PubMed ID: 8885386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.