These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12564901)

  • 1. Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms.
    Templeton AS; Trainor TP; Spormann AM; Newville M; Sutton SR; Dohnalkova A; Gorby Y; Brown GE
    Environ Sci Technol; 2003 Jan; 37(2):300-7. PubMed ID: 12564901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speciation of Pb(II) sorbed by Burkholderia cepacia/goethite composites.
    Templeton AS; Spormann AM; Brown GE
    Environ Sci Technol; 2003 May; 37(10):2166-72. PubMed ID: 12785522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periplasmic space is the key location for Pb(II) biomineralization by Burkholderia cepacia.
    He N; Ran M; Hu L; Jiang C; Liu Y
    J Hazard Mater; 2023 Mar; 445():130465. PubMed ID: 36436453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pb(II) distributions at biofilm-metal oxide interfaces.
    Templeton AS; Trainor TP; Traina SJ; Spormann AM; Brown GE
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11897-902. PubMed ID: 11572932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid.
    Scheckel KG; Ryan JA
    Sci Total Environ; 2003 Jan; 302(1-3):253-65. PubMed ID: 12526914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study.
    Chen S; Ma Y; Chen L; Wang L; Guo H
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electron microscopic study of Burkholderia cepacia biofilms].
    Smirnova TA; Didenko LV; Andreev AL; Aklekseeva NV; Stepanova TV; Romanova IuM
    Mikrobiologiia; 2008; 77(1):63-70. PubMed ID: 18365723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead immobilization by phosphate in the presence of iron oxides: Adsorption versus precipitation.
    Shi Q; Zhang S; Ge J; Wei J; Christodoulatos C; Korfiatis GP; Meng X
    Water Res; 2020 Jul; 179():115853. PubMed ID: 32388052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal mechanism of Pb(II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation.
    Xu X; Hao R; Xu H; Lu A
    Sci Rep; 2020 Jun; 10(1):9079. PubMed ID: 32493948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Use of XAFS to Distinguish between Inner- and Outer-Sphere Lead Adsorption Complexes on Montmorillonite.
    Strawn DG; Sparks DL
    J Colloid Interface Sci; 1999 Aug; 216(2):257-269. PubMed ID: 10421733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.
    Hashimoto Y; Takaoka M; Oshita K; Tanida H
    Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray absorption near edge structure study of lead sorption on phosphate-treated kaolinite.
    Taylor RW; Bleam WF; Ranatunga TD; Schulthess CP; Senwo ZN; Ranatunga DR
    Environ Sci Technol; 2009 Feb; 43(3):711-7. PubMed ID: 19245006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive sorption of Pb(II) and Zn(II) on polyacrylic acid-coated hydrated aluminum-oxide surfaces.
    Wang Y; Michel FM; Levard C; Choi Y; Eng PJ; Brown GE
    Environ Sci Technol; 2013; 47(21):12131-9. PubMed ID: 24024496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia.
    Tomlin KL; Coll OP; Ceri H
    Can J Microbiol; 2001 Oct; 47(10):949-54. PubMed ID: 11718549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation.
    McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L
    Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Adsorption Behaviors of Lead on Multi-Walled Carbon Nanotube-Hydroxyapatite Composites].
    Zhang JL; Li Y
    Huan Jing Ke Xue; 2015 Jul; 36(7):2554-63. PubMed ID: 26489325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the calcite-water interface.
    Rouff AA; Elzinga EJ; Reeder RJ; Fisher NS
    Environ Sci Technol; 2004 Mar; 38(6):1700-7. PubMed ID: 15074678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pb sorption on montmorillonite-bacteria composites: A combination study by XAFS, ITC and SCM.
    Qu C; Du H; Ma M; Chen W; Cai P; Huang Q
    Chemosphere; 2018 Jun; 200():427-436. PubMed ID: 29501033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Burkholderia cepacia biofilms with oxidants.
    Koenig DW; Mishra SK; Pierson DL
    Biofouling; 1995; 9(1):51-62. PubMed ID: 11541193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of aqueous Zn(II) with hematite nanoparticles and microparticles. Part 1. EXAFS study of Zn(II) adsorption and precipitation.
    Ha J; Trainor TP; Farges F; Brown GE
    Langmuir; 2009 May; 25(10):5574-85. PubMed ID: 19371051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.