These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 12565699)

  • 1. Physiological and pathophysiological roles of ATP-sensitive K+ channels.
    Seino S; Miki T
    Prog Biophys Mol Biol; 2003 Feb; 81(2):133-76. PubMed ID: 12565699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfonylurea receptors type 1 and 2A randomly assemble to form heteromeric KATP channels of mixed subunit composition.
    Chan KW; Wheeler A; Csanády L
    J Gen Physiol; 2008 Jan; 131(1):43-58. PubMed ID: 18079561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].
    Nakaya H; Miki T; Seino S; Yamada K; Inagaki N; Suzuki M; Sato T; Yamada M; Matsushita K; Kurachi Y; Arita M
    Nihon Yakurigaku Zasshi; 2003 Sep; 122(3):243-50. PubMed ID: 12939542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors.
    Schwanstecher M; Sieverding C; Dörschner H; Gross I; Aguilar-Bryan L; Schwanstecher C; Bryan J
    EMBO J; 1998 Oct; 17(19):5529-35. PubMed ID: 9755153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Kir6.2-F333I mutation differentially modulates KATP channels composed of SUR1 or SUR2 subunits.
    Tammaro P; Ashcroft F
    J Physiol; 2007 Jun; 581(Pt 3):1259-69. PubMed ID: 17395632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure.
    Dörschner H; Brekardin E; Uhde I; Schwanstecher C; Schwanstecher M
    Mol Pharmacol; 1999 Jun; 55(6):1060-6. PubMed ID: 10347249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential nucleotide regulation of KATP channels by SUR1 and SUR2A.
    Masia R; Enkvetchakul D; Nichols CG
    J Mol Cell Cardiol; 2005 Sep; 39(3):491-501. PubMed ID: 15893323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional role of the C-terminal 42 amino acids of SUR2A and SUR2B in the physiology and pharmacology of cardiovascular ATP-sensitive K(+) channels.
    Yamada M; Kurachi Y
    J Mol Cell Cardiol; 2005 Jul; 39(1):1-6. PubMed ID: 15978900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.
    Seino S; Iwanaga T; Nagashima K; Miki T
    Diabetes; 2000 Mar; 49(3):311-8. PubMed ID: 10868950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis and characteristics of KATP channel in human corporal smooth muscle cells.
    Insuk SO; Chae MR; Choi JW; Yang DK; Sim JH; Lee SW
    Int J Impot Res; 2003 Aug; 15(4):258-66. PubMed ID: 12934053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A.
    Cui Y; Tinker A; Clapp LH
    Br J Pharmacol; 2003 May; 139(1):122-8. PubMed ID: 12746230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of a novel dihydropyridine K+ channel opener, A-312110, with recombinant sulphonylurea receptors and KATP channels: comparison with the cyanoguanidine P1075.
    Felsch H; Lange U; Hambrock A; Löffler-Walz C; Russ U; Carroll WA; Gopalakrishnan M; Quast U
    Br J Pharmacol; 2004 Apr; 141(7):1098-105. PubMed ID: 15023854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B.
    Matsuo M; Tanabe K; Kioka N; Amachi T; Ueda K
    J Biol Chem; 2000 Sep; 275(37):28757-63. PubMed ID: 10893240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heart mitochondria contain functional ATP-dependent K+ channels.
    Lacza Z; Snipes JA; Miller AW; Szabó C; Grover G; Busija DW
    J Mol Cell Cardiol; 2003 Nov; 35(11):1339-47. PubMed ID: 14596790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil.
    Shindo T; Yamada M; Isomoto S; Horio Y; Kurachi Y
    Br J Pharmacol; 1998 Jul; 124(5):985-91. PubMed ID: 9692785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels.
    Matsuoka T; Matsushita K; Katayama Y; Fujita A; Inageda K; Tanemoto M; Inanobe A; Yamashita S; Matsuzawa Y; Kurachi Y
    Circ Res; 2000 Nov; 87(10):873-80. PubMed ID: 11073882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A view of sur/KIR6.X, KATP channels.
    Babenko AP; Aguilar-Bryan L; Bryan J
    Annu Rev Physiol; 1998; 60():667-87. PubMed ID: 9558481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.
    Seino S
    J Diabetes Complications; 2003; 17(2 Suppl):2-5. PubMed ID: 12623161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers.
    Fujita A; Kurachi Y
    Pharmacol Ther; 2000 Jan; 85(1):39-53. PubMed ID: 10674713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation.
    Béguin P; Nagashima K; Nishimura M; Gonoi T; Seino S
    EMBO J; 1999 Sep; 18(17):4722-32. PubMed ID: 10469651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.