These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12565998)

  • 21. Dynamic visualization of signal transduction in living cells: from second messengers to kinases.
    Herbst KJ; Ni Q; Zhang J
    IUBMB Life; 2009 Sep; 61(9):902-8. PubMed ID: 19603514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photo-crosslinking of clinically relevant kinases using H89-derived photo-affinity probes.
    Stolze SC; Liu N; Wijdeven RH; Tuin AW; van den Nieuwendijk AM; Florea BI; van der Stelt M; van der Marel GA; Neefjes JJ; Overkleeft HS
    Mol Biosyst; 2016 May; 12(6):1809-17. PubMed ID: 27138522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From FRET imaging to practical methodology for kinase activity sensing in living cells.
    Sipieter F; Vandame P; Spriet C; Leray A; Vincent P; Trinel D; Bodart JF; Riquet FB; Héliot L
    Prog Mol Biol Transl Sci; 2013; 113():145-216. PubMed ID: 23244791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and applications of a broad-coverage, TR-FRET-based kinase binding assay platform.
    Lebakken CS; Riddle SM; Singh U; Frazee WJ; Eliason HC; Gao Y; Reichling LJ; Marks BD; Vogel KW
    J Biomol Screen; 2009 Sep; 14(8):924-35. PubMed ID: 19564447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved fluorescence resonance energy transfer as a versatile tool in the development of homogeneous cellular kinase assays.
    Saville L; Spais C; Mason JL; Albom MS; Murthy S; Meyer SL; Ator MA; Angeles TS; Husten J
    Assay Drug Dev Technol; 2012 Dec; 10(6):551-7. PubMed ID: 22428805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FRET Microscopy for Real-Time Visualization of Second Messengers in Living Cells.
    Kraft AE; Nikolaev VO
    Methods Mol Biol; 2017; 1563():85-90. PubMed ID: 28324603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualizing and manipulating temporal signaling dynamics with fluorescence-based tools.
    Doupé DP; Perrimon N
    Sci Signal; 2014 Apr; 7(319):re1. PubMed ID: 24692594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetically Encoded FRET Biosensors to Illuminate Compartmentalised GPCR Signalling.
    Halls ML; Canals M
    Trends Pharmacol Sci; 2018 Feb; 39(2):148-157. PubMed ID: 29054309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applying microscopy to the analysis of nuclear structure and function.
    Iborra F; Cook PR; Jackson DA
    Methods; 2003 Feb; 29(2):131-41. PubMed ID: 12606219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators.
    Miyamoto T; Rho E; Sample V; Akano H; Magari M; Ueno T; Gorshkov K; Chen M; Tokumitsu H; Zhang J; Inoue T
    Cell Rep; 2015 Apr; 11(4):657-70. PubMed ID: 25892241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring ERK Activity Dynamics in Single Living Cells Using FRET Biosensors.
    Blum Y; Fritz RD; Ryu H; Pertz O
    Methods Mol Biol; 2017; 1487():203-221. PubMed ID: 27924569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases.
    Weidtkamp-Peters S; Stahl Y
    Methods Mol Biol; 2017; 1621():163-175. PubMed ID: 28567653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring dynamic GPCR signaling events using fluorescence microscopy, FRET imaging, and single-molecule imaging.
    Xu X; Brzostowski JA; Jin T
    Methods Mol Biol; 2009; 571():371-83. PubMed ID: 19763980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Principles of resonance energy transfer.
    Szöllosi J; Damjanovich S; Nagy P; Vereb G; Mátyus L
    Curr Protoc Cytom; 2006 Nov; Chapter 1():Unit1.12. PubMed ID: 18770831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revealing signaling in single cells by single- and two-photon fluorescence lifetime imaging microscopy.
    Alcor D; Calleja V; Larijani B
    Methods Mol Biol; 2009; 462():307-43. PubMed ID: 19160679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of Protease Activities Using Fluorogenic Substrates.
    Santamaria S; Nagase H
    Methods Mol Biol; 2018; 1731():107-122. PubMed ID: 29318548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein activation dynamics in cells and tumor micro arrays assessed by time resolved Förster resonance energy transfer.
    Calleja V; Leboucher P; Larijani B
    Methods Enzymol; 2012; 506():225-46. PubMed ID: 22341227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Förster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes.
    Crosby KC; Pietraszewska-Bogiel A; Gadella TW; Winkel BS
    FEBS Lett; 2011 Jul; 585(14):2193-8. PubMed ID: 21669202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FRET microscopy in the living cell: different approaches, strengths and weaknesses.
    Padilla-Parra S; Tramier M
    Bioessays; 2012 May; 34(5):369-76. PubMed ID: 22415767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein.
    Siegel RM; Chan FK; Zacharias DA; Swofford R; Holmes KL; Tsien RY; Lenardo MJ
    Sci STKE; 2000 Jun; 2000(38):pl1. PubMed ID: 11752595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.