BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12566068)

  • 1. Superoxide-dependence of the short chain sugars-induced mutagenesis.
    Benov L; Beema AF
    Free Radic Biol Med; 2003 Feb; 34(4):429-33. PubMed ID: 12566068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of the soxRS regulon of Escherichia coli by glycolaldehyde.
    Benov L; Fridovich I
    Arch Biochem Biophys; 2002 Nov; 407(1):45-8. PubMed ID: 12392714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Cu,Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars.
    Ukeda H; Hasegawa Y; Ishi T; Sawamura M
    Biosci Biotechnol Biochem; 1997 Dec; 61(12):2039-42. PubMed ID: 9438984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of alpha,beta -dicarbonyl compounds in the toxicity of short chain sugars.
    Okado-Matsumoto A; Fridovich I
    J Biol Chem; 2000 Nov; 275(45):34853-7. PubMed ID: 10931845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dependence of the toxicity of short chain sugars.
    Benov L; Fridovich I
    J Biol Chem; 1998 Oct; 273(40):25741-4. PubMed ID: 9748243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic molecular mechanisms and cytoprotection by enzymic metabolism or autoxidation for glyceraldehyde, hydroxypyruvate and glycolaldehyde.
    Yang K; Feng C; Lip H; Bruce WR; O'Brien PJ
    Chem Biol Interact; 2011 May; 191(1-3):315-21. PubMed ID: 21376711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide radical initiates the autoxidation of dihydroxyacetone.
    Mashino T; Fridovich I
    Arch Biochem Biophys; 1987 May; 254(2):547-51. PubMed ID: 3034165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transketolase A from E. coli Significantly Suppresses Protein Glycation by Glycolaldehyde and Glyoxal in Vitro.
    Klaus A; Pfirrmann T; Glomb MA
    J Agric Food Chem; 2017 Sep; 65(37):8196-8202. PubMed ID: 28880548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triosephosphates are toxic to superoxide dismutase-deficient Escherichia coli.
    Benov L; Beema AF; Sequeira F
    Biochim Biophys Acta; 2003 Jul; 1622(2):128-32. PubMed ID: 12880950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase.
    Farr SB; D'Ari R; Touati D
    Proc Natl Acad Sci U S A; 1986 Nov; 83(21):8268-72. PubMed ID: 3022287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase.
    Prieto-Alamo MJ; Abril N; Pueyo C
    Carcinogenesis; 1993 Feb; 14(2):237-44. PubMed ID: 8382113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions.
    Thornalley P; Wolff S; Crabbe J; Stern A
    Biochim Biophys Acta; 1984 Feb; 797(2):276-87. PubMed ID: 6365176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatocyte inflammation model for cytotoxicity research: fructose or glycolaldehyde as a source of endogenous toxins.
    Feng CY; Wong S; Dong Q; Bruce J; Mehta R; Bruce WR; O'Brien PJ
    Arch Physiol Biochem; 2009 May; 115(2):105-11. PubMed ID: 19485706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of mutagenesis by glyoxal in Salmonella typhimurium: contribution of singlet oxygen.
    Ueno H; Nakamuro K; Sayato Y; Okada S
    Mutat Res; 1991 Nov; 251(1):99-107. PubMed ID: 1944381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-ultraviolet mutagenesis in superoxide dismutase-deficient strains of Escherichia coli.
    Knowles RL; Eisenstark A
    Environ Health Perspect; 1994 Jan; 102(1):88-94. PubMed ID: 9719674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions.
    Klaus A; Baldensperger T; Fiedler R; Girndt M; Glomb MA
    J Agric Food Chem; 2018 Feb; 66(6):1498-1508. PubMed ID: 29400466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assay of metabolic superoxide production in Escherichia coli.
    Imlay JA; Fridovich I
    J Biol Chem; 1991 Apr; 266(11):6957-65. PubMed ID: 1849898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction.
    Glomb MA; Monnier VM
    J Biol Chem; 1995 Apr; 270(17):10017-26. PubMed ID: 7730303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of carnosine and related compounds on the inactivation of human Cu,Zn-superoxide dismutase by modification of fructose and glycolaldehyde.
    Ukeda H; Hasegawa Y; Harada Y; Sawamura M
    Biosci Biotechnol Biochem; 2002 Jan; 66(1):36-43. PubMed ID: 11866117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.