These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12566293)

  • 1. Correlation between impaired dexterity and corticospinal tract dysgenesis in congenital hemiplegia.
    Duque J; Thonnard JL; Vandermeeren Y; Sébire G; Cosnard G; Olivier E
    Brain; 2003 Mar; 126(Pt 3):732-47. PubMed ID: 12566293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticospinal dysgenesis and upper-limb deficits in congenital hemiplegia: a diffusion tensor imaging study.
    Bleyenheuft Y; Grandin CB; Cosnard G; Olivier E; Thonnard JL
    Pediatrics; 2007 Dec; 120(6):e1502-11. PubMed ID: 18025078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired grip-lift synergy in children with unilateral brain lesions.
    Forssberg H; Eliasson AC; Redon-Zouitenn C; Mercuri E; Dubowitz L
    Brain; 1999 Jun; 122 ( Pt 6)():1157-68. PubMed ID: 10356067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive and reactive control of precision grip in children with congenital hemiplegia.
    Bleyenheuft Y; Thonnard JL
    Neurorehabil Neural Repair; 2010 May; 24(4):318-27. PubMed ID: 19959831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome.
    Raghavan P; Krakauer JW; Gordon AM
    Brain; 2006 Jun; 129(Pt 6):1415-25. PubMed ID: 16597653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual recovery profiles of manual dexterity, and relation to corticospinal lesion load and excitability after stroke -a longitudinal pilot study.
    Birchenall J; Térémetz M; Roca P; Lamy JC; Oppenheim C; Maier MA; Mas JL; Lamy C; Baron JC; Lindberg PG
    Neurophysiol Clin; 2019 Apr; 49(2):149-164. PubMed ID: 30391148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of cortical hand representation in congenital hemiplegia.
    Vandermeeren Y; Davare M; Duque J; Olivier E
    Eur J Neurosci; 2009 Feb; 29(4):845-54. PubMed ID: 19200077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.
    Eidenmüller S; Randerath J; Goldenberg G; Li Y; Hermsdörfer J
    Neuropsychologia; 2014 Aug; 61():222-34. PubMed ID: 24978304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-latency motor evoked potentials in congenital hemiplegia.
    Vandermeeren Y; Bastings E; Fadiga L; Olivier E
    Clin Neurophysiol; 2003 Oct; 114(10):1808-18. PubMed ID: 14499742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery and Prediction of Dynamic Precision Grip Force Control After Stroke.
    Pennati GV; Plantin J; Carment L; Roca P; Baron JC; Pavlova E; Borg J; Lindberg PG
    Stroke; 2020 Mar; 51(3):944-951. PubMed ID: 31906829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of hand function and precision grip control in individuals with cerebral palsy: a 13-year follow-up study.
    Eliasson AC; Forssberg H; Hung YC; Gordon AM
    Pediatrics; 2006 Oct; 118(4):e1226-36. PubMed ID: 17015511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy.
    Gordon AM; Duff SV
    Dev Med Child Neurol; 1999 Sep; 41(9):586-91. PubMed ID: 10503916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual dexterity and corticospinal connectivity following unilateral section of the cervical spinal cord in the macaque monkey.
    Galea MP; Darian-Smith I
    J Comp Neurol; 1997 May; 381(3):307-19. PubMed ID: 9133570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force oscillations underlying precision grip in humans with lesioned corticospinal tracts.
    Lafe CW; Liu F; Simpson TW; Moon CH; Collinger JL; Wittenberg GF; Urbin MA
    Neuroimage Clin; 2023; 38():103398. PubMed ID: 37086647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile spatial resolution in unilateral brain lesions and its correlation with digital dexterity.
    Bleyenheuft Y; Thonnard JL
    J Rehabil Med; 2011 Feb; 43(3):251-6. PubMed ID: 21305242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study.
    Vandermeeren Y; Sébire G; Grandin CB; Thonnard JL; Schlögel X; De Volder AG
    Neuroimage; 2003 Sep; 20(1):289-301. PubMed ID: 14527589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nondigital afferent input in reactive control of fingertip forces during precision grip.
    Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):131-41. PubMed ID: 8817264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired force coordination during object release in children with hemiplegic cerebral palsy.
    Eliasson AC; Gordon AM
    Dev Med Child Neurol; 2000 Apr; 42(4):228-34. PubMed ID: 10795560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of fingertip forces during precision grasping in multiple system atrophy.
    Muratori LM; Reilmann R; Gordon AM
    Neuropsychologia; 2003; 41(11):1498-508. PubMed ID: 12849768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.