These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 12566460)
1. Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. Sharypova LA; Niehaus K; Scheidle H; Holst O; Becker A J Biol Chem; 2003 Apr; 278(15):12946-54. PubMed ID: 12566460 [TBL] [Abstract][Full Text] [Related]
2. Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. Basu SS; Karbarz MJ; Raetz CR J Biol Chem; 2002 Aug; 277(32):28959-71. PubMed ID: 12019272 [TBL] [Abstract][Full Text] [Related]
3. A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium. Brozek KA; Carlson RW; Raetz CR J Biol Chem; 1996 Dec; 271(50):32126-36. PubMed ID: 8943266 [TBL] [Abstract][Full Text] [Related]
4. Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Ferguson GP; Datta A; Carlson RW; Walker GC Mol Microbiol; 2005 Apr; 56(1):68-80. PubMed ID: 15773979 [TBL] [Abstract][Full Text] [Related]
5. Biochemical characterization of Sinorhizobium meliloti mutants reveals gene products involved in the biosynthesis of the unusual lipid A very long-chain fatty acid. Haag AF; Wehmeier S; Muszyński A; Kerscher B; Fletcher V; Berry SH; Hold GL; Carlson RW; Ferguson GP J Biol Chem; 2011 May; 286(20):17455-66. PubMed ID: 21454518 [TBL] [Abstract][Full Text] [Related]
6. The Sinorhizobium meliloti LpxXL and AcpXL proteins play important roles in bacteroid development within alfalfa. Haag AF; Wehmeier S; Beck S; Marlow VL; Fletcher V; James EK; Ferguson GP J Bacteriol; 2009 Jul; 191(14):4681-6. PubMed ID: 19429615 [TBL] [Abstract][Full Text] [Related]
8. The Lipopolysaccharide Lipid A Long-Chain Fatty Acid Is Important for Rhizobium leguminosarum Growth and Stress Adaptation in Free-Living and Nodule Environments. Bourassa DV; Kannenberg EL; Sherrier DJ; Buhr RJ; Carlson RW Mol Plant Microbe Interact; 2017 Feb; 30(2):161-175. PubMed ID: 28054497 [TBL] [Abstract][Full Text] [Related]
9. The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. Vedam V; Kannenberg E; Datta A; Brown D; Haynes-Gann JG; Sherrier DJ; Carlson RW J Bacteriol; 2006 Mar; 188(6):2126-33. PubMed ID: 16513742 [TBL] [Abstract][Full Text] [Related]
10. The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. Scheidle H; Gross A; Niehaus K New Phytol; 2005 Feb; 165(2):559-65. PubMed ID: 15720666 [TBL] [Abstract][Full Text] [Related]
11. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa. Wippel K; Long SR J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825 [TBL] [Abstract][Full Text] [Related]
12. The Rhizobium meliloti regulatory nodD3 and syrM genes control the synthesis of a particular class of nodulation factors N-acylated by (omega-1)-hydroxylated fatty acids. Demont N; Ardourel M; Maillet F; Promé D; Ferro M; Promé JC; Dénarié J EMBO J; 1994 May; 13(9):2139-49. PubMed ID: 8187767 [TBL] [Abstract][Full Text] [Related]
13. The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids. Debellé F; Plazanet C; Roche P; Pujol C; Savagnac A; Rosenberg C; Promé JC; Dénarié J Mol Microbiol; 1996 Oct; 22(2):303-14. PubMed ID: 8930915 [TBL] [Abstract][Full Text] [Related]
14. A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. Lagares A; Caetano-Anollés G; Niehaus K; Lorenzen J; Ljunggren HD; Pühler A; Favelukes G J Bacteriol; 1992 Sep; 174(18):5941-52. PubMed ID: 1325969 [TBL] [Abstract][Full Text] [Related]
15. An acpXL mutant of Rhizobium leguminosarum bv. phaseoli lacks 27-hydroxyoctacosanoic acid in its lipid A and is developmentally delayed during symbiotic infection of the determinate nodulating host plant Phaseolus vulgaris. Brown DB; Huang YC; Kannenberg EL; Sherrier DJ; Carlson RW J Bacteriol; 2011 Sep; 193(18):4766-78. PubMed ID: 21764936 [TBL] [Abstract][Full Text] [Related]
16. SMb20651 is another acyl carrier protein from Sinorhizobium meliloti. Ramos-Vega AL; Dávila-Martínez Y; Sohlenkamp C; Contreras-Martínez S; Encarnación S; Geiger O; López-Lara IM Microbiology (Reading); 2009 Jan; 155(Pt 1):257-267. PubMed ID: 19118366 [TBL] [Abstract][Full Text] [Related]
17. Phosphatidylcholine-deficient suppressor mutant of Sinorhizobium meliloti, altered in fatty acid synthesis, partially recovers nodulation ability in symbiosis with alfalfa (Medicago sativa). García-Ledesma JD; Cárdenas-Torres L; Martínez-Aguilar L; Chávez-Martínez AI; Lozano L; López-Lara IM; Geiger O Plant J; 2024 May; 118(4):1136-1154. PubMed ID: 38341846 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization of the lipid A component of Sinorhizobium sp. NGR234 rough and smooth form lipopolysaccharide. Demonstration that the distal amide-linked acyloxyacyl residue containing the long chain fatty acid is conserved in rhizobium and Sinorhizobium sp. Gudlavalleti SK; Forsberg LS J Biol Chem; 2003 Feb; 278(6):3957-68. PubMed ID: 12456672 [TBL] [Abstract][Full Text] [Related]
19. Deficiency of a Sinorhizobium meliloti BacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope. Ferguson GP; Roop RM; Walker GC J Bacteriol; 2002 Oct; 184(20):5625-32. PubMed ID: 12270820 [TBL] [Abstract][Full Text] [Related]
20. Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. Demont N; Debellé F; Aurelle H; Dénarié J; Promé JC J Biol Chem; 1993 Sep; 268(27):20134-42. PubMed ID: 8376372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]