BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12566576)

  • 1. Regulation of actin-dependent cytoplasmic motility by type II phytochrome occurs within seconds in Vallisneria gigantea epidermal cells.
    Takagi S; Kong SG; Mineyuki Y; Furuya M
    Plant Cell; 2003 Feb; 15(2):331-45. PubMed ID: 12566576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells.
    Foissner I; Wasteneys GO
    Plant Cell Physiol; 2007 Apr; 48(4):585-97. PubMed ID: 17327257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding.
    Jedd G; Chua NH
    Plant Cell Physiol; 2002 Apr; 43(4):384-92. PubMed ID: 11978866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes.
    Cárdenas L; Lovy-Wheeler A; Wilsen KL; Hepler PK
    Cell Motil Cytoskeleton; 2005 Jun; 61(2):112-27. PubMed ID: 15849722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cytoplasmic streaming in Vallisneria mesophyll cells.
    Takagi S; Nagai R
    J Cell Sci; 1983 Jul; 62():385-405. PubMed ID: 6413519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative regulation of cytoplasmic streaming and ca fluxes by pfr and photosynthesis in vallisneria mesophyll cells.
    Takagi S; Yamamoto KT; Furuya M; Nagai R
    Plant Physiol; 1990 Dec; 94(4):1702-8. PubMed ID: 16667905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D.
    Spector I; Shochet NR; Blasberger D; Kashman Y
    Cell Motil Cytoskeleton; 1989; 13(3):127-44. PubMed ID: 2776221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall-plasma membrane adhesion.
    Hayashi T; Harada A; Sakai T; Takagi S
    Plant Cell Environ; 2006 Apr; 29(4):661-72. PubMed ID: 17080616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs.
    McAvey BA; Wortzman GB; Williams CJ; Evans JP
    Biol Reprod; 2002 Oct; 67(4):1342-52. PubMed ID: 12297554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin.
    Collings DA; Harper JD; Vaughn KC
    Planta; 2003 Dec; 218(2):204-16. PubMed ID: 12937986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin-organelle interaction: association with chloroplast in arabidopsis leaf mesophyll cells.
    Kandasamy MK; Meagher RB
    Cell Motil Cytoskeleton; 1999 Oct; 44(2):110-8. PubMed ID: 10506746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea.
    Sakurai N; Domoto K; Takagi S
    Planta; 2005 Apr; 221(1):66-74. PubMed ID: 15843965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light.
    Sakai Y; Takagi S
    Planta; 2005 Aug; 221(6):823-30. PubMed ID: 15809866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of actin filaments in rhizoid morphogenesis of Spirogyra.
    Yoshida K; Shimmen T
    Physiol Plant; 2009 Jan; 135(1):98-107. PubMed ID: 19121103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol (1,4,5)-trisphosphate receptor links to filamentous actin are important for generating local Ca2+ signals in pancreatic acinar cells.
    Turvey MR; Fogarty KE; Thorn P
    J Cell Sci; 2005 Mar; 118(Pt 5):971-80. PubMed ID: 15713744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo.
    von Dassow G; Schubiger G
    J Cell Biol; 1994 Dec; 127(6 Pt 1):1637-53. PubMed ID: 7798318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of the cytoskeleton and of protein phosphorylation events in the osmotic stress response in eel intestinal epithelium.
    Lionetto MG; Pedersen SF; Hoffmann EK; Giordano ME; Schettino T
    Cell Physiol Biochem; 2002; 12(4):163-78. PubMed ID: 12297722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls.
    Ryu JH; Takagi S; Nagai R
    J Cell Sci; 1995 Apr; 108 ( Pt 4)():1531-9. PubMed ID: 7615673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diatom gliding is the result of an actin-myosin motility system.
    Poulsen NC; Spector I; Spurck TP; Schultz TF; Wetherbee R
    Cell Motil Cytoskeleton; 1999; 44(1):23-33. PubMed ID: 10470016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.