These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 12567245)
1. Replacement of methionine 208 in a truncated Bacillus sp. TS-23 alpha-amylase with oxidation-resistant leucine enhances its resistance to hydrogen peroxide. Lin LL; Lo HF; Chiang WY; Hu HY; Hsu WH; Chang CT Curr Microbiol; 2003 Mar; 46(3):211-6. PubMed ID: 12567245 [TBL] [Abstract][Full Text] [Related]
2. Generating oxidation-resistant variants of Bacillus kaustophilus leucine aminopeptidase by substitution of the critical methionine residues with leucine. Chi MC; Chou WM; Wang CH; Chen W; Hsu WH; Lin LL Antonie Van Leeuwenhoek; 2004 Nov; 86(4):355-62. PubMed ID: 15702388 [TBL] [Abstract][Full Text] [Related]
3. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica. Yang H; Liu L; Li J; Du G; Chen J Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900 [TBL] [Abstract][Full Text] [Related]
4. Engineering of a truncated alpha-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. Chi MC; Chen YH; Wu TJ; Lo HF; Lin LL J Biosci Bioeng; 2010 Jun; 109(6):531-8. PubMed ID: 20471589 [TBL] [Abstract][Full Text] [Related]
5. Identification of essential histidine residues in a recombinant alpha-amylase of thermophilic and alkaliphilic Bacillus sp. strain TS-23. Chang CT; Lo HF; Chi MC; Yao CY; Hsu WH; Lin LL Extremophiles; 2003 Dec; 7(6):505-9. PubMed ID: 12856195 [TBL] [Abstract][Full Text] [Related]
6. Substitution of the critical methionine residues in trigonopsis variabilis D-amino acid oxidase with leucine enhances its resistance to hydrogen peroxide. Ju SS; Lin LL; Chien HR; Hsu WH FEMS Microbiol Lett; 2000 May; 186(2):215-9. PubMed ID: 10802174 [TBL] [Abstract][Full Text] [Related]
7. Thermostabilization by proline substitution in an alkaline, liquefying alpha-amylase from Bacillus sp. strain KSM-1378. Igarashi K; Ozawa T; Ikawakitayama K; Hayashi Y; Araki H; Endo K; Hagihara H; Ozaki K; Kawai S; Ito S Biosci Biotechnol Biochem; 1999 Sep; 63(9):1535-40. PubMed ID: 10540739 [TBL] [Abstract][Full Text] [Related]
8. Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23. Lo HF; Lin LL; Chiang WY; Chie MC; Hsu WH; Chang CT Arch Microbiol; 2002 Aug; 178(2):115-23. PubMed ID: 12115056 [TBL] [Abstract][Full Text] [Related]
9. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Khemakhem B; Ali MB; Aghajari N; Juy M; Haser R; Bejar S Biotechnol Bioeng; 2009 Feb; 102(2):380-9. PubMed ID: 18951544 [TBL] [Abstract][Full Text] [Related]
10. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Bessler C; Schmitt J; Maurer KH; Schmid RD Protein Sci; 2003 Oct; 12(10):2141-9. PubMed ID: 14500872 [TBL] [Abstract][Full Text] [Related]
11. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis. Priyadharshini R; Gunasekaran P Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074 [TBL] [Abstract][Full Text] [Related]
12. Role of Val289 residue in the alpha-amylase of Bacillus amyloliquefaciens MTCC 610: an analysis by site directed mutagenesis. Priyadharshini R; Hemalatha D; Gunasekaran P J Microbiol Biotechnol; 2010 Mar; 20(3):563-8. PubMed ID: 20372028 [TBL] [Abstract][Full Text] [Related]
13. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of Bacillus stearothermophilus leucine aminopeptidase II by hydrogen peroxide and site-directed mutagenesis of methionine residues on the enzyme. Kuo LY; Hwang GY; Yang SL; Hua YW; Chen W; Lin LL Protein J; 2004 May; 23(4):295-302. PubMed ID: 15214500 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of methionine residues for improving the oxidative stability of α-amylase from Thermotoga maritima. Ozturk H; Ece S; Gundeger E; Evran S J Biosci Bioeng; 2013 Oct; 116(4):449-51. PubMed ID: 23702189 [TBL] [Abstract][Full Text] [Related]
16. The N-terminal signal sequence and the last 98 amino acids are not essential for the secretion of Bacillus sp. TS-23 alpha-amylase in Escherichia coli. Lo HF; Lin LL; Li CC; Hsu WH; Chang CT Curr Microbiol; 2001 Sep; 43(3):170-5. PubMed ID: 11400065 [TBL] [Abstract][Full Text] [Related]
17. Identification of glutamate residues important for catalytic activity of Bacillus stearothermophilus leucine aminopeptidase II. Yang HL; Chen RS; Chen W; Lin LL Antonie Van Leeuwenhoek; 2006 Aug; 90(2):195-9. PubMed ID: 16820970 [TBL] [Abstract][Full Text] [Related]
18. Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Liu YH; Lu FP; Li Y; Wang JL; Gao C Appl Microbiol Biotechnol; 2008 Oct; 80(5):795-803. PubMed ID: 18626642 [TBL] [Abstract][Full Text] [Related]
19. Significance of Tyr302, His235 and Asp194 in the α-amylase from Bacillus licheniformis. Qin Y; Fang Z; Pan F; Zhao Y; Li H; Wu H; Meng X Biotechnol Lett; 2012 May; 34(5):895-9. PubMed ID: 22261861 [TBL] [Abstract][Full Text] [Related]
20. Improved thermostability of a Bacillus alpha-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Igarashi K; Hatada Y; Ikawa K; Araki H; Ozawa T; Kobayashi T; Ozaki K; Ito S Biochem Biophys Res Commun; 1998 Jul; 248(2):372-7. PubMed ID: 9675143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]