These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12567246)

  • 1. A Role for the glycolipid exoantigen (GLXA) in chlamydial infectivity.
    Vora GJ; Stuart ES
    Curr Microbiol; 2003 Mar; 46(3):217-23. PubMed ID: 12567246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell surface display of the chlamydial glycolipid exoantigen (GLXA) demonstrated by antibody-dependent complement-mediated cytotoxicity.
    Webley WC; Vora GJ; Stuart ES
    Curr Microbiol; 2004 Jul; 49(1):13-21. PubMed ID: 15297924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis.
    Whittum-Hudson JA; Rudy D; Gèrard H; Vora G; Davis E; Haller PK; Prattis SM; Hudson AP; Saltzman WM; Stuart ES
    Vaccine; 2001 Jul; 19(28-29):4061-71. PubMed ID: 11427283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of chlamydial glycolipid with monoclonal antibodies: cellular distribution and epitope binding.
    Stuart ES; Wyrick PB; Choong J; Stoler SB; MacDonald AB
    Immunology; 1991 Dec; 74(4):740-7. PubMed ID: 1723717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and functional antigenic mimicry by a polyclonal anti-idiotypic antibody for chlamydial exoglycolipid antigen.
    An LL; Hudson AP; Prendergast RA; O'Brien TP; Stuart ES; Whittum-Hudson JA; MacDonald AB
    Pathobiology; 1997; 65(5):229-40. PubMed ID: 9459493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection.
    Whittum-Hudson JA; An LL; Saltzman WM; Prendergast RA; MacDonald AB
    Nat Med; 1996 Oct; 2(10):1116-21. PubMed ID: 8837610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of multiple genital tract infections with Chlamydia trachomatis in different strains of female mice.
    Lyons JM; Morré SA; Airo-Brown LP; Peña AS; Ito JI
    J Microbiol Immunol Infect; 2005 Dec; 38(6):383-93. PubMed ID: 16341338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glycolipid exoantigen derived from Chlamydia muridarum activates invariant natural killer T cells.
    Peng Y; Zhao L; Shekhar S; Liu L; Wang H; Chen Q; Gao X; Yang X; Zhao W
    Cell Mol Immunol; 2012 Jul; 9(4):361-6. PubMed ID: 22728762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis.
    Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G
    Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A live and inactivated Chlamydia trachomatis mouse pneumonitis strain induces the maturation of dendritic cells that are phenotypically and immunologically distinct.
    Rey-Ladino J; Koochesfahani KM; Zaharik ML; Shen C; Brunham RC
    Infect Immun; 2005 Mar; 73(3):1568-77. PubMed ID: 15731055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mannose-receptor positive and negative mouse macrophages differ in their susceptibility to infection by Chlamydia species.
    Kuo CC; Puolakkainen M; Lin TM; Witte M; Campbell LA
    Microb Pathog; 2002 Jan; 32(1):43-8. PubMed ID: 11782120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge.
    Pal S; Peterson EM; Rappuoli R; Ratti G; de la Maza LM
    Vaccine; 2006 Feb; 24(6):766-75. PubMed ID: 16199110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mucosal immunization with recombinant MOMP genetically linked with modified cholera toxin confers protection against Chlamydia trachomatis infection.
    Singh SR; Hulett K; Pillai SR; Dennis VA; Oh MK; Scissum-Gunn K
    Vaccine; 2006 Feb; 24(8):1213-24. PubMed ID: 16194585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of susceptibility to Chlamydia trachomatis in mouse.
    Bernstein-Hanley I; Balsara ZR; Ulmer W; Coers J; Starnbach MN; Dietrich WF
    Genes Immun; 2006 Mar; 7(2):122-9. PubMed ID: 16395389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB.
    Barker CJ; Beagley KW; Hafner LM; Timms P
    Vaccine; 2008 Mar; 26(10):1285-96. PubMed ID: 18261829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some characteristics of a secreted chlamydial antigen recognized by IgG from C. trachomatis patient sera.
    Stuart ES; Macdonald AB
    Immunology; 1989 Dec; 68(4):469-73. PubMed ID: 2606506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of intranasal and transcutaneous immunization for induction of protective immunity against Chlamydia muridarum respiratory tract infection.
    Skelding KA; Hickey DK; Horvat JC; Bao S; Roberts KG; Finnie JM; Hansbro PM; Beagley KW
    Vaccine; 2006 Jan; 24(3):355-66. PubMed ID: 16153755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of Chlamydia muridarum within dendritic cells.
    Rey-Ladino J; Jiang X; Gabel BR; Shen C; Brunham RC
    Infect Immun; 2007 Aug; 75(8):3707-14. PubMed ID: 17502393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host inflammatory response and development of complications of Chlamydia trachomatis genital infection in CCR5-deficient mice and subfertile women with the CCR5delta32 gene deletion.
    Barr EL; Ouburg S; Igietseme JU; Morré SA; Okwandu E; Eko FO; Ifere G; Belay T; He Q; Lyn D; Nwankwo G; Lillard JW; Black CM; Ananaba GA
    J Microbiol Immunol Infect; 2005 Aug; 38(4):244-54. PubMed ID: 16118671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.