BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12567362)

  • 1. Mechanical and structural characteristics of the new BONE-LOK cortical-cancellous internal fixation device.
    Cachia VV; Culbert B; Warren C; Oka R; Mahar A
    J Foot Ankle Surg; 2003; 42(1):15-20. PubMed ID: 12567362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.
    Cachia VV; Shumway D; Culbert B; Padget M
    J Foot Ankle Surg; 2003; 42(6):344-9. PubMed ID: 14688776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical testing of seven fixation methods for generation of compression across a midtarsal osteotomy: a comparison of internal and external fixation devices.
    Grant WP; Rubin LG; Pupp GR; Vito G; Jacobus D; Jerlin EA; Tam HS
    J Foot Ankle Surg; 2007; 46(5):325-35. PubMed ID: 17761316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model.
    Snow M; Thompson G; Turner PG
    J Orthop Trauma; 2008 Feb; 22(2):121-5. PubMed ID: 18349780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pullout strengths of cannulated and noncannulated cancellous bone screws.
    Thompson JD; Benjamin JB; Szivek JA
    Clin Orthop Relat Res; 1997 Aug; (341):241-9. PubMed ID: 9269180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures.
    Patil S; Mahon A; Green S; McMurtry I; Port A
    Knee; 2006 Jun; 13(3):231-5. PubMed ID: 16647262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical evaluation of fracture fixation augmented with tricalcium phosphate bone cement in a porous osteoporotic cancellous bone model.
    Collinge C; Merk B; Lautenschlager EP
    J Orthop Trauma; 2007 Feb; 21(2):124-8. PubMed ID: 17304068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws.
    Seebeck J; Goldhahn J; Städele H; Messmer P; Morlock MM; Schneider E
    J Orthop Res; 2004 Nov; 22(6):1237-42. PubMed ID: 15475203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suture versus screw fixation of displaced tibial eminence fractures: a biomechanical comparison.
    Bong MR; Romero A; Kubiak E; Iesaka K; Heywood CS; Kummer F; Rosen J; Jazrawi L
    Arthroscopy; 2005 Oct; 21(10):1172-6. PubMed ID: 16226643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical comparison of fixation techniques for the offset V osteotomy: a saw bone study.
    Jacobson K; Gough A; Mendicino SS; Rockett MS
    J Foot Ankle Surg; 2003; 42(6):339-43. PubMed ID: 14688775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine thread versus coarse thread. A comparison of the maximum holding power.
    Gausepohl T; Möhring R; Pennig D; Koebke J
    Injury; 2001 Dec; 32 Suppl 4():SD1-7. PubMed ID: 11812471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fixation of the femoral condyles: a mechanical comparison of small and large fragment screw fixation.
    Khalafi A; Hazelwood S; Curtiss S; Wolinsky P
    J Trauma; 2008 Mar; 64(3):740-4. PubMed ID: 18332817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are locking screws advantageous with plate fixation of humeral shaft fractures? A biomechanical analysis of synthetic and cadaveric bone.
    O'Toole RV; Andersen RC; Vesnovsky O; Alexander M; Topoleski LD; Nascone JW; Sciadini MF; Turen C; Eglseder WA
    J Orthop Trauma; 2008; 22(10):709-15. PubMed ID: 18978547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of screw pullout rate on screw purchase in synthetic cancellous bone.
    Zdero R; Schemitsch EH
    J Biomech Eng; 2009 Feb; 131(2):024501. PubMed ID: 19102576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical evaluation of conventional internal contemporary spinal fixation techniques used for stabilization of complete sacroiliac joint separation: a 3-dimensional unilaterally isolated experimental stiffness study.
    Korovessis PG; Magnissalis EA; Deligianni D
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E941-51. PubMed ID: 17139210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models.
    Patel PS; Shepherd DE; Hukins DW
    Med Eng Phys; 2010 Oct; 32(8):822-8. PubMed ID: 20558097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.
    Hsu CC; Chao CK; Wang JL; Hou SM; Tsai YT; Lin J
    J Orthop Res; 2005 Jul; 23(4):788-94. PubMed ID: 16022991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical assessment of compression screws.
    Wheeler DL; McLoughlin SW
    Clin Orthop Relat Res; 1998 May; (350):237-45. PubMed ID: 9602825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.