These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12567362)

  • 41. Evaluation of a new method of small fragment fixation in a medial malleolus fracture model.
    Rovinsky D; Haskell A; Liu Q; Paiement GD; Robinovitch S
    J Orthop Trauma; 2000 Aug; 14(6):420-5. PubMed ID: 11001416
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proximal half angle of the screw thread is a critical design variable affecting the pull-out strength of cancellous bone screws.
    Wang Y; Mori R; Ozoe N; Nakai T; Uchio Y
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):781-5. PubMed ID: 19699567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomechanical study of pedicle screw fixation in severely osteoporotic bone.
    Cook SD; Salkeld SL; Stanley T; Faciane A; Miller SD
    Spine J; 2004; 4(4):402-8. PubMed ID: 15246300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical considerations in plate osteosynthesis: the effect of plate-to-bone compression with and without angular screw stability.
    Stoffel K; Lorenz KU; Kuster MS
    J Orthop Trauma; 2007 Jul; 21(6):362-8. PubMed ID: 17620993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of pullout strength of small-diameter cannulated and solid-core screws.
    Kissel CG; Friedersdorf SC; Foltz DS; Snoeyink T
    J Foot Ankle Surg; 2003; 42(6):334-8. PubMed ID: 14688774
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support.
    Chen SH; Mo Lin R; Chen HH; Tsai KJ
    BMC Musculoskelet Disord; 2007 Mar; 8():28. PubMed ID: 17349057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Screw pull-out force is dependent on screw orientation in an anterior cervical plate construct.
    DiPaola CP; Jacobson JA; Awad H; Conrad BP; Rechtine GR
    J Spinal Disord Tech; 2007 Jul; 20(5):369-73. PubMed ID: 17607102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of fixation methods for scaphoid nonunions: a biomechanical model.
    Panchal A; Kubiak EN; Keshner M; Fulkerson E; Paksima N
    Bull NYU Hosp Jt Dis; 2007; 65(4):271-5. PubMed ID: 18081547
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tension band wire fixation for valgus osteotomies of the proximal femur: a biomechanical study of three configurations of fixation.
    Volpon JB; Batista LC; Shimano MM; Moro CA
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):395-401. PubMed ID: 18187241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rigid internal fixation with titanium versus bioresorbable miniplates in the repair of mandibular fractures in rabbits.
    Hochuli-Vieira E; Cabrini Gabrielli MA; Pereira-Filho VA; Gabrielli MF; Padilha JG
    Int J Oral Maxillofac Surg; 2005 Mar; 34(2):167-73. PubMed ID: 15695046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A fatigue life analysis of small fragment screws.
    Merk BR; Stern SH; Cordes S; Lautenschlager EP
    J Orthop Trauma; 2001; 15(7):494-9. PubMed ID: 11602832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The value of miniature compression screws in maxillofacial surgery].
    Boutault F; Cadenat H; Poirot A; Bodin H
    Ann Chir Plast Esthet; 1989; 34(1):51-7. PubMed ID: 2470321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanical properties of new mini compression screws.
    Nguyen C; Singh D; Harrison M; Blunn G; Herman A; Dudkiewicz I
    Foot Ankle Int; 2009 Jun; 30(6):545-50. PubMed ID: 19486633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laboratory testing of bolts and screws in cancellous bone.
    Pratt WB; Yazdani S
    Orthop Rev; 1989 Oct; 18(10):1073-7. PubMed ID: 2608304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical properties of small fragment screws.
    Collinge CA; Stern S; Cordes S; Lautenschlager EP
    Clin Orthop Relat Res; 2000 Apr; (373):277-84. PubMed ID: 10810488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pullout strength of 2.0 mm cancellous and cortical screws in synthetic bone.
    Moser JE; Kunkel KAR; Gerard PD
    Vet Surg; 2017 Nov; 46(8):1110-1115. PubMed ID: 28817191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Absorbable self-reinforced polyglycolide (SR-PGA) screws for the fixation of fractures and osteotomies: strength and strength retention in vitro and in vivo.
    Vasenius J; Helevirta P; Kuisma H; Rokkanen P; Törmälä P
    Clin Mater; 1994; 17(3):119-23. PubMed ID: 10150598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Holding power of orthopedic screws in the large metacarpal and metatarsal bones of calves.
    Blikslager AT; Bowman KF; Abrams CF; Seaboch TR; Hunt EL
    Am J Vet Res; 1994 Mar; 55(3):415-8. PubMed ID: 8192269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Laboratory comparison of the cannulated Herbert bone screw with ASIF cancellous lag screws.
    Marshall PD; Evans PD; Richards J
    J Bone Joint Surg Br; 1993 Jan; 75(1):89-92. PubMed ID: 8421045
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological and mechanical characteristics of the interface between a new swelling anchor and bone.
    Gualtieri GM; Siegler S; Hume EL; Kalidindi SR
    J Orthop Res; 2000 May; 18(3):494-9. PubMed ID: 10937639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.