These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 12568253)
1. Odor concentration decay and stability in gas sampling bags. van Harreveld AP J Air Waste Manag Assoc; 2003 Jan; 53(1):51-60. PubMed ID: 12568253 [TBL] [Abstract][Full Text] [Related]
2. Stability of odorants from pig production in sampling bags for olfactometry. Hansen MJ; Adamsen AP; Feilberg A; Jonassen KE J Environ Qual; 2011; 40(4):1096-102. PubMed ID: 21712578 [TBL] [Abstract][Full Text] [Related]
3. Testing odorants recovery from a novel metallized fluorinated ethylene propylene gas sampling bag. Zhu W; Koziel JA; Cai L; Wright D; Kuhrt F J Air Waste Manag Assoc; 2015 Dec; 65(12):1434-45. PubMed ID: 26453185 [TBL] [Abstract][Full Text] [Related]
4. Bias of Tedlar bags in the measurement of agricultural odorants. Trabue SL; Anhalt JC; Zahn JA J Environ Qual; 2006; 35(5):1668-77. PubMed ID: 16899738 [TBL] [Abstract][Full Text] [Related]
5. Difference in the odor concentrations measured by the triangle odor bag method and dynamic olfactometry. Ueno H; Amano S; Merecka B; Kośmider J Water Sci Technol; 2009; 59(7):1339-42. PubMed ID: 19380999 [TBL] [Abstract][Full Text] [Related]
6. Olfactory response to mushroom composting emissions as a function of chemical concentration. Noble R; Hobbs PJ; Dobrovin-Pennington A; Misselbrook TH; Mead A J Environ Qual; 2001; 30(3):760-7. PubMed ID: 11401265 [TBL] [Abstract][Full Text] [Related]
7. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags. Parker DB; Perschbacher-Buser ZL; Cole NA; Koziel JA Sensors (Basel); 2010; 10(9):8536-52. PubMed ID: 22163671 [TBL] [Abstract][Full Text] [Related]
8. Quality assured measurements of animal building emissions: odor concentrations. Jacobson LD; Hetchler BP; Schmidt DR; Nicolai RE; Heber AJ; Ni JQ; Hoff SJ; Koziel JA; Zhang Y; Beasley DB; Parker DB J Air Waste Manag Assoc; 2008 Jun; 58(6):806-11. PubMed ID: 18581810 [TBL] [Abstract][Full Text] [Related]
9. Prediction of odor from pig production based on chemical odorants. Hansen MJ; Adamsen AP; Pedersen P; Feilberg A J Environ Qual; 2012; 41(2):436-43. PubMed ID: 22370406 [TBL] [Abstract][Full Text] [Related]
10. Automated Collection of Real-Time Alerts of Citizens as a Useful Tool to Continuously Monitor Malodorous Emissions. Brattoli M; Mazzone A; Giua R; Assennato G; de Gennaro G Int J Environ Res Public Health; 2016 Feb; 13(3):. PubMed ID: 26927148 [TBL] [Abstract][Full Text] [Related]
11. Improvement of odor intensity measurement using dynamic olfactometry. Jiang J; Coffey P; Toohey B J Air Waste Manag Assoc; 2006 May; 56(5):675-83. PubMed ID: 16739805 [TBL] [Abstract][Full Text] [Related]
12. Odorant composition of post-consumer LDPE bags originating from different collection systems. Cabanes A; Strangl M; Ortner E; Fullana A; Buettner A Waste Manag; 2020 Mar; 104():228-238. PubMed ID: 31982786 [TBL] [Abstract][Full Text] [Related]
13. Material odor-odoractive compounds identified in different materials--the surprising similarities with certain foods, possible sources and hypotheses on their formation. Mayer F; Breuer K Indoor Air; 2006 Oct; 16(5):373-82. PubMed ID: 16948713 [TBL] [Abstract][Full Text] [Related]
14. Identification of complex septic odorants in Huangpu River source water by combining the data from gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography using retention indices. Guo Q; Yu J; Yang K; Wen X; Zhang H; Yu Z; Li H; Zhang D; Yang M Sci Total Environ; 2016 Jun; 556():36-44. PubMed ID: 26974564 [TBL] [Abstract][Full Text] [Related]
15. Characterization of livestock odors using steel plates, solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. Bulliner EA; Koziel JA; Cai L; Wright D J Air Waste Manag Assoc; 2006 Oct; 56(10):1391-403. PubMed ID: 17063862 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of Loss of Agricultural Odorous Compounds in Sample Bags of Nalophan, Tedlar, and PTFE. Kasper PL; Oxbøl A; Hansen MJ; Feilberg A J Environ Qual; 2018 Mar; 47(2):246-253. PubMed ID: 29634807 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters. Koziel JA; Spinhirne JP; Lloyd JD; Parker DB; Wright DW; Kuhrt FW J Air Waste Manag Assoc; 2005 Aug; 55(8):1147-57. PubMed ID: 16187584 [TBL] [Abstract][Full Text] [Related]
18. Use of poly(ethylene terephtalate) film bag to sample and remove humidity from atmosphere containing volatile organic compounds. Beghi S; Guillot JM J Chromatogr A; 2008 Mar; 1183(1-2):1-5. PubMed ID: 18243220 [TBL] [Abstract][Full Text] [Related]
19. Swine odor analyzed by odor panels and chemical techniques. Trabue S; Kerr B; Bearson B; Ziemer C J Environ Qual; 2011; 40(5):1510-20. PubMed ID: 21869513 [TBL] [Abstract][Full Text] [Related]
20. Ambient odour testing of concentrated animal feeding operations using field and laboratory olfactometers. Newby BD; McGinley MA Water Sci Technol; 2004; 50(4):109-14. PubMed ID: 15484749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]