These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 12568464)
1. Acute toxicity of drainage ditch water from a Washington State cranberry-growing region to Daphnia pulex in laboratory bioassays. Wood B; Stark JD Ecotoxicol Environ Saf; 2002 Oct; 53(2):273-80. PubMed ID: 12568464 [TBL] [Abstract][Full Text] [Related]
2. Ambient toxicity due to chlorpyrifos and diazinon in a central California coastal watershed. Hunt JW; Anderson BS; Phillips BM; Nicely PN; Tjeerdema RS; Puckett HM; Stephenson M; Worcester K; De Vlaming V Environ Monit Assess; 2003 Feb; 82(1):83-112. PubMed ID: 12602624 [TBL] [Abstract][Full Text] [Related]
3. Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA). Anderson BS; Hunt JW; Phillips BM; Nicely PA; Vlaming Vd; Connor V; Richard N; Tjeerdema RS Environ Pollut; 2003; 124(3):523-32. PubMed ID: 12758031 [TBL] [Abstract][Full Text] [Related]
4. Demographic changes in Daphnia pulex (Leydig) after exposure to the insecticides spinosad and diazinon. Stark JD; Vargas RI Ecotoxicol Environ Saf; 2003 Nov; 56(3):334-8. PubMed ID: 14575672 [TBL] [Abstract][Full Text] [Related]
5. Temporal trends analysis of 2004 to 2012 toxicity and pesticide data for California's Central Valley water quality coalitions. Hall LW; Anderson RD J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):313-26. PubMed ID: 24279623 [TBL] [Abstract][Full Text] [Related]
6. Toxicokinetic and toxicodynamic model for diazinon toxicity--mechanistic explanation of differences in the sensitivity of Daphnia magna and Gammarus pulex. Kretschmann A; Ashauer R; Hollender J; Escher BI Environ Toxicol Chem; 2012 Sep; 31(9):2014-22. PubMed ID: 22653849 [TBL] [Abstract][Full Text] [Related]
7. Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Ashauer R; Hintermeister A; Potthoff E; Escher BI Aquat Toxicol; 2011 May; 103(1-2):38-45. PubMed ID: 21392493 [TBL] [Abstract][Full Text] [Related]
8. Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models. Loureiro S; Svendsen C; Ferreira AL; Pinheiro C; Ribeiro F; Soares AM Environ Toxicol Chem; 2010 Aug; 29(8):1716-26. PubMed ID: 20821624 [TBL] [Abstract][Full Text] [Related]
9. Pesticide and toxicity reduction using an integrated vegetated treatment system. Anderson B; Phillips B; Hunt J; Largay B; Shihadeh R; Tjeerdema R Environ Toxicol Chem; 2011 May; 30(5):1036-43. PubMed ID: 21309024 [TBL] [Abstract][Full Text] [Related]
10. Optical bioassay for measuring sublethal toxicity of insecticides in Daphnia pulex. Zein MA; McElmurry SP; Kashian DR; Savolainen PT; Pitts DK Environ Toxicol Chem; 2014 Jan; 33(1):144-51. PubMed ID: 24115287 [TBL] [Abstract][Full Text] [Related]
11. Acute toxicity tests with Daphnia magna, Americamysis bahia, Chironomus riparius and Gammarus pulex and implications of new EU requirements for the aquatic effect assessment of insecticides. Brock TC; Van Wijngaarden RP Environ Sci Pollut Res Int; 2012 Sep; 19(8):3610-8. PubMed ID: 22562347 [TBL] [Abstract][Full Text] [Related]
12. Exposures of aquatic organisms to the organophosphorus insecticide, chlorpyrifos resulting from use in the United States. Williams WM; Giddings JM; Purdy J; Solomon KR; Giesy JP Rev Environ Contam Toxicol; 2014; 231():77-117. PubMed ID: 24723134 [TBL] [Abstract][Full Text] [Related]
14. Assessment of biochemical mechanisms of tolerance to chlorpyrifos in ancient and contemporary Daphnia pulicaria genotypes. Simpson AM; Jeyasingh PD; Belden JB Aquat Toxicol; 2017 Dec; 193():122-127. PubMed ID: 29059598 [TBL] [Abstract][Full Text] [Related]
15. Acute toxicity of mixtures of chlorpyrifos, profenofos, and endosulfan to Ceriodaphnia dubia. Woods M; Kumar A; Correll R Bull Environ Contam Toxicol; 2002 Jun; 68(6):801-8. PubMed ID: 12012054 [No Abstract] [Full Text] [Related]
16. Ecotoxicity of binary mixtures of Microcystis aeruginosa and insecticides to Daphnia pulex. Asselman J; Janssen CR; Smagghe G; De Schamphelaere KA Environ Pollut; 2014 May; 188():56-63. PubMed ID: 24553247 [TBL] [Abstract][Full Text] [Related]
17. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA. Anderson BS; Hunt JW; Phillips BM; Nicely PA; Gilbert KD; de Vlaming V; Connor V; Richard N; Tjeerdema RS Environ Toxicol Chem; 2003 Oct; 22(10):2375-84. PubMed ID: 14552002 [TBL] [Abstract][Full Text] [Related]
18. Using a freshwater amphipod in situ bioassay as a sensitive tool to detect pesticide effects in the field. Schulz R Environ Toxicol Chem; 2003 May; 22(5):1172-6. PubMed ID: 12729231 [TBL] [Abstract][Full Text] [Related]
19. Population-level effects of the neem insecticide, Neemix, on Daphnia pulex. Stark JD J Environ Sci Health B; 2001 Jul; 36(4):457-65. PubMed ID: 11495023 [TBL] [Abstract][Full Text] [Related]
20. Living on the edge: populations of two zooplankton species living closer to agricultural fields are more resistant to a common insecticide. Bendis RJ; Relyea RA Environ Toxicol Chem; 2014 Dec; 33(12):2835-41. PubMed ID: 25220688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]