BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12568549)

  • 21. Protease A activity and nitrogen fractions released during alcoholic fermentation and autolysis in enological conditions.
    Alexandre H; Heintz D; Chassagne D; Guilloux-Benatier M; Charpentier C; Feuillat M
    J Ind Microbiol Biotechnol; 2001 Apr; 26(4):235-40. PubMed ID: 11464273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation.
    Tesnière C; Brice C; Blondin B
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7025-34. PubMed ID: 26201494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.
    Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM
    Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic acids influence iron uptake in the human epithelial cell line Caco-2.
    Salovaara S; Sandberg AS; Andlid T
    J Agric Food Chem; 2002 Oct; 50(21):6233-8. PubMed ID: 12358508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation.
    Molinet J; Cubillos FA; Salinas F; Liti G; Martínez C
    PLoS One; 2019; 14(7):e0220515. PubMed ID: 31348805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation.
    Pinu FR; Edwards PJ; Gardner RC; Villas-Boas SG
    FEMS Yeast Res; 2014 Dec; 14(8):1206-22. PubMed ID: 25345561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SO(2) protects the amino nitrogen metabolism of Saccharomyces cerevisiae under thermal stress.
    Ancín-Azpilicueta C; Barriuso-Esteban B; Nieto-Rojo R; Aristizábal-López N
    Microb Biotechnol; 2012 Sep; 5(5):654-62. PubMed ID: 22452834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of organic acids in wine that stimulate mechanisms of gastric acid secretion.
    Liszt KI; Walker J; Somoza V
    J Agric Food Chem; 2012 Jul; 60(28):7022-30. PubMed ID: 22708700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.
    Volschenk H; Viljoen-Bloom M; Subden RE; van Vuuren HJ
    Yeast; 2001 Jul; 18(10):963-70. PubMed ID: 11447602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of nutrients addition to nonlimited-in-nitrogen must on wine volatile composition.
    González-Marco A; Jiménez-Moreno N; Ancín-Azpilicueta C
    J Food Sci; 2010 May; 75(4):S206-11. PubMed ID: 20546423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.
    Magyar I; Nyitrai-Sárdy D; Leskó A; Pomázi A; Kállay M
    Int J Food Microbiol; 2014 May; 178():1-6. PubMed ID: 24667312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method.
    Martínez-Rodríguez AJ; Carrascosa AV; Martín-Alvarez PJ; Moreno-Arribas V; Polo MC
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):314-22. PubMed ID: 12483471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process.
    Arrizon J; Gschaedler A
    Can J Microbiol; 2002 Nov; 48(11):965-70. PubMed ID: 12556124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of polyphenols and organic acids during the fermentation of apple cider.
    Ye M; Yue T; Yuan Y
    J Sci Food Agric; 2014 Nov; 94(14):2951-7. PubMed ID: 24615462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement effect study of some organic acids on the calcium availability of vegetables: application of the dynamic in vitro simulated gastrointestinal digestion method with continuous-flow dialysis.
    Shiowatana J; Purawatt S; Sottimai U; Taebunpakul S; Siripinyanond A
    J Agric Food Chem; 2006 Nov; 54(24):9010-6. PubMed ID: 17117785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.
    Jara M; Cubillos FA; García V; Salinas F; Aguilera O; Liti G; Martínez C
    PLoS One; 2014; 9(1):e86533. PubMed ID: 24466135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K; Boido E; Dellacassa E; Carrau F
    Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen.
    Jiranek V; Langridge P; Henschke PA
    Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations.
    Bohlscheid JC; Fellman JK; Wang XD; Ansen D; Edwards CG
    J Appl Microbiol; 2007 Feb; 102(2):390-400. PubMed ID: 17241344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress.
    Malacrinò P; Tosi E; Caramia G; Prisco R; Zapparoli G
    Lett Appl Microbiol; 2005; 40(6):466-72. PubMed ID: 15892744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.